-
摘要:
采用等温溶解平衡法研究了三元体系KCl+CaCl2+H2O在278.2 K及308.2 K温度条件下的稳定相平衡关系,实验测定了平衡时各组分的溶解度、密度、折光率,联合采用Schreinemaker湿渣法与X-ray粉晶衍射法确定了平衡固相组成。结果表明三元体系在278.2 K及308.2 K温度条件下为简单三元体系,无复盐或固溶体生成,对应的稳定相图包含1个共饱和点,2条单变量曲线和2个单盐结晶区。对比三元体系278.2 K、308.2 K、348.2 K温度条件下的相图发现:308.2 K时,氯化钾结晶区最大,表明此时氯化钾最易析出;随温度进一步升高,氯化钙结晶形式由CaCl2·6H2O转变为CaCl2·2H2O。
Abstract:The stable phase equilibria of the ternary system KCl+CaCl2+H2O at 278.2 K and 308.2 K were investigated by isothermal dissolution equilibrium method. The solubilities, densities, and refractive indices of the aqueous ternary system were determined, the corresponding solid phases were identified by Schreinemakers wet residue method and X-ray diffraction. The results show that the ternary system KCl+CaCl2+H2O at 278.2 K and 308.2 K are both simple types, without double salt or solid solution formed. The stable phase diagram of the ternary system consists of one invariant point, two isothermal dissolution curves, and two crystallization zones corresponding to two single salts CaCl2·6H2O and KCl. By comparison of the stable phase diagrams at 278.2 K, 308.2 K, and 348.2 K shows that the crystallization region of KCl is largest at 308.2 K, which means that it is most easily precipitated from the chloride type solution with potassium and calcium. The crystallization form of calcium chloride changes from CaCl2·6H2O to CaCl2·2H2O with temperature increase.
-
-
表 1 三元体系KCl+CaCl2+H2O 278.2 K、308.2K固液平衡组成、密度和折光率
Table 1. The composition, density and refractive index of the ternary system KCl+CaCl2+H2O at 278.2 K and 308.2 K
编号 密度/(g·cm-3) 折光率 液相组成w(B)/% 固相组成w(B)/% 平衡固相 w(KCl) w(CaCl2) w(KCl) w(CaCl2) T=278.2 K 1, A 1.1537 1.3660 22.55 0.00 - - KCl 2 1.1614 1.3712 19.54 3.66 57.71 2.08 KCl 3 1.1665 1.3734 17.56 5.62 67.32 2.82 KCl 4 1.1733 1.3767 16.20 7.48 56.66 4.02 KCl 5 1.1830 1.3781 14.91 9.03 88.25 1.73 KCl 6 1.1897 1.3819 13.07 11.05 44.21 7.05 KCl 7 1.1993 1.3839 12.11 12.60 85.28 2.69 KCl 8 1.2129 1.3899 10.24 15.55 71.75 4.76 KCl 9 1.2254 1.3939 8.50 17.71 37.55 12.50 KCl 10 1.2409 1.3996 7.12 20.88 56.09 9.86 KCl 11 1.2609 1.4064 5.92 23.62 51.97 11.98 KCl 12 1.2720 1.4099 5.36 25.37 56.48 11.64 KCl 13 1.2941 1.4159 4.17 27.87 56.41 12.51 KCl 14 1.3272 1.4243 2.24 31.91 84.17 5.53 KCl 15, E 1.3848 1.4401 1.74 37.88 0.37 46.74 KCl+CaCl2·6H2O 16 1.3731 1.4405 0.72 38.32 0.11 46.40 CaCl2·6H2O 17, B 1.3796 1.4400 0.00 38.49 - - CaCl2·6H2O T=308.2 K 1, C 1.1857 1.3700 28.17 0.00 - - KCl 2 1.1881 1.3754 23.46 4.62 63.80 2.20 KCl 3 1.2066 1.3808 19.92 8.76 65.39 3.59 KCl 4 1.2235 1.3868 15.98 13.04 55.87 6.91 KCl 5 1.2374 1.3930 13.17 16.92 51.74 9.25 KCl 6 1.2583 1.3998 11.06 20.14 47.56 11.93 KCl 7 1.2759 1.4066 8.95 23.59 45.21 14.86 KCl 8 1.3005 1.4135 7.55 26.70 43.38 16.45 KCl 9 1.3217 1.4202 5.95 29.96 40.69 19.25 KCl 10 1.3363 1.4268 5.24 32.84 48.38 17.82 KCl 11 1.3576 1.4330 4.70 35.52 45.60 20.02 KCl 12 1.3840 1.4390 4.53 37.42 46.93 19.77 KCl 13 1.3969 1.4441 4.81 39.37 46.06 23.04 KCl 14 1.4198 1.4500 4.86 41.41 47.34 23.01 KCl 15 1.4627 1.4598 5.38 44.26 45.41 25.98 KCl 16 1.5078 1.4665 5.05 47.00 36.84 31.93 KCl 17 1.5317 1.4716 5.98 49.18 89.04 6.15 KCl 18, F 1.5557 1.4773 6.38 50.48 9.13 51.72 KCl+CaCl2·4H2O 19 1.5138 1.4680 5.65 50.72 - - CaCl2·4H2O 20 1.4919 1.4674 3.85 50.81 - - CaCl2·4H2O 21, D 1.4863 1.4675 0.00 51.18 - - CaCl2·4H2O -
[1] 熊增华, 王石军. 中国钾资源开发利用技术及产业发展综述[J]. 矿产保护与利用, 2020, 40(6): 1-7. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=24883b53-43b7-4a8b-9eda-d3ba4df8d9cd
[2] 杨卉芃, 曹飞. 世界钾资源研究系列之一——资源概况及供需分析[J]. 矿产保护与利用, 2015, 35(1): 75-78. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b86cebfe-dc5d-46f2-9fec-6afb18400cd4
[3] 郑绵平, 张震, 侯献华, 等. 中国钾资源远景与矿业发展战略[J]. 国土资源情报, 2015(10): 3-9. doi: 10.3969/j.issn.1674-3709.2015.10.001
[4] 熊增华, 王石军. 察尔汗盐湖资源开发利用现状及关键技术进展[J]. 化工矿物与加工, 2021, 50(1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ202101008.htm
[5] POTTER Ⅱ R W, CLYNNE M A, CALIF M P. Solubility of highly soluble salts in aqueous media-part 1, NaCl, KC1, CaCl2, Na2SO4, and K2SO4 solubilities to 100 ℃[J]. Journal of Research of the U. S. Geological Survey, 1978, 6(6): 701-705.
[6] LI D D, ZENG D W, YIN X, et al. Phase diagrams and thermochemical modeling of salt lake brine systems. ii. NaCl+H2O, KCl+H2O, MgCl2+ H2O and CaCl2+H2O systems[J]. Calphad Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 53: 78-89.
[7] 丁秀萍, 毕玉敬, 时历杰, 等. 三元体系NaCl-CaCl2-H2O 25 ℃相关系研究[J]. 盐湖研究, 2009, 17(3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200903010.htm
[8] YANG J M, LIU X L, LIANG P P. Solubilities of salts in the ternary systems NaCl+CaCl2+H2O and KCl+CaCl2+H2O at 75 ℃[J]. Russian Journal of Physical Chemistry A, 2011, 85(7): 1149-1154.
[9] LI D C, ZHANG Z Y, FAN R, et al. Solid-liquid phase equilibria in the aqueous systems (CaCl2+SrCl2+H2O) and (NaCl+CaCl2+SrCl2+H2O) at 288.15 K[J]. Journal of Chemical and Engineering Data. 2019, 64(6): 2767-2773. doi: 10.1021/acs.jced.9b00154
[10] 毕玉敬, 孙柏, 赵静, 等. 25 ℃时三元体系SrCl2-CaCl2-H2O相平衡研究[J]. 无机化学学报, 2011, 27(9): 1765-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201109018.htm
[11] GUO L J, ZENG D W, YAO Y, et al. Isopiestic measurement and solubility evaluation of the ternary system (CaCl2+SrCl2+H2O) at T=298.15 K[J]. Journal of Chemical Thermodynamics, 2013, 63: 60-66. doi: 10.1016/j.jct.2013.03.021
[12] HAN H J, JI X, MA J J, et al. Water activity, solubility determination, and model simulation of the CaCl2-SrCl2-H2O Ternary System at 323.15 K[J]. Journal of Chemical and Engineering Data, 2018. 63: 1636-1641.
[13] WANG L, YU X D, LI M L, et al. Phase equilibrium for the aqueous ternary systems NH4+, Sr2+(Ca2+) // Cl--H2O at T = 298 K[J]. Journal of Chemical Engineering of Japan, 2018, 51: 551-555.
[14] YU X D, LIU M, ZHENG Q F, et al. Measurement and correlation of phase equilibria of ammonium, calcium, aluminum, and chloride in aqueous solution at 298.15 K[J]. Journal of Chemical and Engineering Data., 2019, 64: 3514-3520.
[15] 中国科学院青海盐湖研究所. 卤水和盐的分析方法[M]. 北京: 科学出版社, 1988: 56-59, 69-71.
[16] 中国有色金属工业协会. 铝及铝合金化学分析方法第33部分: 钾含量的测定火焰原子吸收光谱法: GB/T 20975.33—2020[S]. 2020-11-19.
-