Research Progress on Impurity Characteristics and Deep Chemical Purification Technology in High-purity Quartz
-
摘要:
随着战略性新兴产业的快速发展,高纯石英成为诸多尖端领域的关键性基础原料之一。高纯石英的战略地位日益凸显,而我国高端高纯石英砂对外依存度仍居高不下,加快推进我国高纯石英砂制备关键技术的发展迫在眉睫。在概述国内外高纯石英资源的基础上,从杂质的存在形式和杂质对产品质量的影响两个方面分析了高纯石英中的杂质特征,并系统总结了高纯石英深度提纯酸处理法和热处理法两个关键技术进展情况,提出现阶段我国高纯石英提纯存在的问题及建议,以期为我国高纯石英提纯技术的发展提供参考。
Abstract:With the rapid development of strategic emerging industries, high purity quartz has become one of the key basic raw materials for many cutting-edge fields. The strategic position of high-purity quartz is becoming more and more prominent, and the dependence of China's high-end high-purity quartz sand on foreign countries is still high, so it is urgent to accelerate the key technology of high-purity quartz sand preparation in China. Based on the overview of high purity quartz resources at home and abroad, the impurity characteristics in high purity quartz were analyzed from two aspects: the existence of impurities and the influence of impurities on product quality, and the progress of two key technologies for deep purification of high purity quartz, acid treatment method and heat treatment method, were systematically summarized.
-
Key words:
- high purity quartz /
- purification /
- impurity elements /
- chemical leaching /
- chlorination roasting
-
-
表 1 石英杂质元素的赋存状态和存在形式
Table 1. Occurrence state and existent form of impurity elements in quartz
元素 赋存状态及存在形式 元素 赋存状态及存在形式 Al 黏土类矿物;类质同象 Li 电荷补偿杂质;包裹体 Fe 赤、黄铁矿等独立矿物;类质同象;亚微米包裹体 Na 钠长石、云母等独立矿物;电荷补偿杂质;包裹体 Ca 方解石、萤石等独立矿物;包裹体 Ti 金红石;类质同象 Mg 白云石、云母等独立矿物;包裹体 B 类质同象 K 钾长石、黏土矿等独立矿物;电荷补偿杂质;包裹体 H 电荷补偿杂质;包裹体中的水、有机质 表 2 硅氧键Si-O和常见Me-O键键能[23] /(kJ·mol-1)
Table 2. Siloxane bond energy and common Me-O bond energy
化学元素 Si4+ Ti4+ Fe3+ Mg2+ Mn2+ Cu2+ Ca2+ 键能 10 312~13 146 12 058 3 845 3 816 3 745 3 598 3 510 化学元素 Al3+ Pb2+ Ba2+ Zn2+ Li+ Na+ K+ 键能 7 201~7 858 3 469 3 213 3 037 1 469 1 347 1 251 表 3 杂质元素对产品质量的影响
Table 3. Effect of impurity elements on product quality
杂质元素 对产品质量的影响 碱金属元素Li、K、Na 降低石英玻璃的使用温度和机械强度,在高温下对石英玻璃的析晶起催化作用,导致石英玻璃出现失透、高温变形等现象。降低碱金属元素的含量有利于提高高纯石英坩埚的软化点,增强石英坩埚的抗变形性,提高单晶的成品率。IOTA标准砂要求碱金属元素总和低于2.4×10-6,用于工艺管、硅片处理、石英块、提单晶硅用的半导体坩埚所需高纯石英要求其总和 < 1.4×10-6,CZ型坩埚要求其总和 < 0.5×10-6,而用于12英寸或更大尺寸硅片所需超高纯石英砂要求其总和 < 0.08×10-6 过渡金属元素Cr、Cu、Fe 使石英玻璃产生色斑或引起石英玻璃的高温变色,影响光透过率,降低仪器的可靠性和稳定性能,在光纤应用中,会引起微观不均匀、增加光纤损耗,甚至导致信号失真,但在半导体应用中,产品中微小含量的过渡金属元素可以促进结晶生长 Al和P 进入石英晶格,会产生较强的化学键,影响石英制品的导电性,同时,增强了石英玻璃的析晶作用,降低了使用寿命。少量的Al不会影响到高纯石英产品的质量,IOTA标准砂要求Al元素含量(12~18) ×10-6,但光导纤维中微量的Al便会降低石英玻璃的光传导。P元素的存在会严重影响单晶硅的拉制,故高纯石英坩埚对P要求高,要求P元素含量 < 0.04×10-6 -
[1] 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 111-117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e759486c-8f66-4a5b-b137-23322ead3cfb
JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status China's development suggestions of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 111-117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e759486c-8f66-4a5b-b137-23322ead3cfb
[2] HAUS R, PRINZ S, PRIESS C. Assessment of high purity quartz resources[M]//GÖTZE J and MÖCKEL R. Quartz: Deposits, Mineralogy and Analytics. Berlin Heideberg: Springer-Verlag, 2012: 29-51.
[3] 汪灵, 党陈萍, 李彩侠, 等. 中国高纯石英技术现状与发展前景[J]. 地学前缘, 2014, 21(5): 267-273. doi: 10.13745/j.esf.2014.05.021
WANG L, DANG C P, LI C X, et al. Technology of high-purity quartz in China: Status quo and prospect[J]. Earth Science Frontiers, 2014, 21(5): 267-273. doi: 10.13745/j.esf.2014.05.021
[4] PLATIAS S, VATALIS K I, CHARALABIDIS G. Innovative processing techniques for the production of a critical raw material the high purity quartz[J]. Procedia Economics and Finance, 2013(5): 597-604.
[5] 汪灵. 石英的矿床工业类型与应用特点[J]. 矿产保护与利用, 2019, 39(6): 39-47. doi: 10.13779/j.cnki.issn1001-0076.2019.06.007 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fb53518c-c1a2-4a9b-be8a-8696fd04bbfa
WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 39-47. doi: 10.13779/j.cnki.issn1001-0076.2019.06.007 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fb53518c-c1a2-4a9b-be8a-8696fd04bbfa
[6] 王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志, 2021, 40(1): 131-141. doi: 10.3969/j.issn.1000-6524.2021.01.012
WANG J Y. Global high purity quartz deposits: Resources distribution and exploitation status[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 131-141. doi: 10.3969/j.issn.1000-6524.2021.01.012
[7] SWANSON S E, VEAL W B. Mineralogy and petrogenesis of pegmatites in the spruce pine district, north carolina, USAS[J]. Journal of Geosciences, 2010, 55: 27-42.
[8] MVLLER A, IHLEN P M, WANVIK J E, et al. High-purity quartz mineralisation in kyanite quartzites, Norway[J]. Miner Deposita, 2007, 42: 523-535.
[9] 焦丽香. 我国脉石英资源开发利用现状及供需分析[J]. 中国非金属矿工业导刊, 2019(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201902004.htm
JIAO L X. Current situation and supply demand analysis of the development and utilization of vein quartz resources in China[J]. China Non-Metallic Minerals Industry, 2019(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201902004.htm
[10] HAUS R. High demands on high purity[J]. Industrial Minerals, 2005, 10: 62-67.
[11] 吴逍, 孙红娟, 彭同江, 等. 青海某地脉石英矿工艺矿物学研究及可选性试验[J]. 矿冶, 2015, 24(2): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201502018.htm
WU X, SUN H J, PENG T J, et al. Process mineralogy study and beneficiation test of a vein quartz ore from Qinghai province[J]. Mining and Metallurgy, 2015, 24(2): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201502018.htm
[12] 钟乐乐. 超高纯石英纯化制备及机理研究[D]. 武汉: 武汉理工大学, 2015.
ZHONG L L. Study on purifying preparation and mechanism of ultra-pure quartz[D]. Wuhan: Wuhan University of Technology, 2015.
[13] 欧阳恒, 张术根, 谷湘平. 溆浦高纯硅矿床石英流体包裹体研究[J]. 中国非金属矿工业导刊, 2006(2): 55-57+64. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200602017.htm
OU Y H, ZHANG S G, GU X P. Fluid inclusions in quartz of high purity silica deposit of Xupu, Hunan[J]. China Non-Metallic Mining Industry Herald, 2006(2): 55-57+64. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200602017.htm
[14] CISNEROS M, ASHLEY K, BODNAR R. Evaluation and application of the quartz-inclusions-in-epidote mineral barometer[J]. American Mineralogist, 2020, 105(8): 1140-1151.
[15] YIN R, JING L, HOU Q, et al. Study on optimization quartz mine for removal gas-liquid inclusions in quartz sand under microwave and acid corrosion[J]. Advanced Materials Research, 2013, 800: 3-7.
[16] DENNEN W H. Stoichiometric substitution in natural quartz[J]. Geochimica et Cosmochimica Acta, 1966, 30(12): 1235-1241.
[17] Roedder E. Fluid inclusions-reviews in mineralogy[M]. Washington: Mineralogical Society of America, 1984: 644.
[18] SIMPSON D R. Aluminum phosphate variants in feldspars[J]. American Mineralogist, 1977, 62: 351.
[19] MCLAREN A C, COOK R F, HYDE S T, et al. The mechanism of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz[J]. Physics and Chemistry of Minerals, 1983, 9(2): 79.
[20] 郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902006.htm
GUO W D, HAN Y X, ZHU Y M, et al. Analysis of high-purity quartz sand resources and it's processing technologies[J]. Metal Mine, 2019(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902006.htm
[21] DALMARTELLO E, BERNARDIS S, LARSEN R B, et al. Electrical fragmentation as a novel route for there finement of quartz raw materials for trace mineral impurities[J]. Powder Technology, 2012, 224: 209-216.
[22] KOVALCHUK B M, KHARLOV A V, VIZIR V A, et al. High-voltage pulsed generator for dynamic fragmentation of rocks[J]. The Review of Scientific Instruments, 2010, 81(10): 11-18.
[23] KLINE W E, FOGLER H S. Dissolution of silicate minerals by hydrofluoric acid[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(2): 155-161.
[24] MVLLER A, WIEDENBECK M, VAN-DEN-KERKHOF A M. Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study[J]. European Journal of Mineralogy, 2003, 15(4): 747-763.
[25] 吴逍. 高纯石英原料选择评价及提纯工艺研究[D]. 绵阳: 西南科技大学, 2016.
WU X. Selection and evaluation of high purity quartz materials and purification technology research[D]. Mianyang: Southwest University of Science and technology, 2016.
[26] 岳丽琴. 高纯石英制备技术评述[J]. 矿产综合利用, 2014(1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201401006.htm
YUE L Q. Review on preparation technology of high purity quartz[J]. Multipurpose Utilization of Mineral Resources, 2014(1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201401006.htm
[27] 苏英, 周永恒, 黄武, 等. 石英玻璃与HF酸反应动力学的研究[J]. 硅酸盐学报, 2004, 32(3): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB200403015.htm
SU Y, ZHOU Y H, HUANG W, et al. Study on reaction kinetics between silica glasses and hydrofluoric acid[J]. Journal of The Chinese Ceramic Society, 2004, 32(3): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB200403015.htm
[28] 刘加威. 石英砂焙烧-酸洗除杂工艺研究[D]. 合肥: 安徽大学, 2017.
LIU J W. Study on purification of silica sands by roasting and acids leaching[D]. Hefei: Anhui University, 2017.
[29] 张雪梅, 汪徐春, 邓军草, 等. 酸络合除石英砂中铁的研究[J]. 硅酸盐通报, 2012, 31(4): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201204022.htm
ZHANG X M, WANG X C, DENG J, et al. Study on oxalic acid complexation method of removing iron from quartz[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(4): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201204022.htm
[30] 田金星. 高纯石英砂的提纯工艺研究[J]. 中国矿业, 1999(3): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199903018.htm
TIAN J X. Researches of extraction technology of high grade quartz sand[J]. China Mining Magazine, 1999(3): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199903018.htm
[31] 张研研. 花岗伟晶岩长石尾矿制多晶硅及HIT太阳电池模拟研究[D]. 阜新: 辽宁工程技术大学, 2014.
ZHANG Y Y. Research on preparation of polysilicon with granitic pegmatite feldspar tailings and HIT solar cell by simulation[D]. Fuxin: Liaoning Technology University, 2014.
[32] 夏章杰, 林敏, 雷绍民, 等. 酸浸出去除石英中Fe、K、Al元素及机理研究[J]. 矿产综合利用, 2018(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201805009.htm
Xia Z J, Lin M, Lei S M, et al. Study on removal of Fe, K and Al in quartz by acid leaching[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201805009.htm
[33] 雷绍民, 慎舟, 黄冬冬. 用于制备熔融石英的块状石英常温浸出技术研究[J]. 矿业研究与开发, 2013, 1(8): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201304014.htm
LEI S M, SHEN Z, HUANG D D. Research on the leaching technology of massive quartz at normal temperature[J]. Mining Research and Development, 2013, 1(8): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201304014.htm
[34] 曾华东, 雷绍民, 刘云涛, 等. 石英氧化浸出提纯中的络合离子的作用及机理[J]. 矿业研究与开发, 2012(12): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201206021.htm
ZENG H D, LEI S M, LIU Y T, et al. Effect and complexation mechanism of complex ion in quartz purification by oxidation leaching[J]. Mining Research and Development, 2012(12): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201206021.htm
[35] 夏章杰. 磷酸浸出-碳酸钠焙烧纯化脉石英及机理研究[D]. 武汉: 武汉理工大学, 2018.
XIA Z J. Research on purification and mechanism of phosphoric acid leaching-sodium carbonate roasting of vein quartz[D]. Wuhan: Wuhan University of Technology, 2018.
[36] 林敏. 脉石英中白云母、晶格杂质分离及机理[D]. 武汉: 武汉理工大学, 2018.
LIN M. Mechanism of removing muscovite and lattice imputiry elements from vein quartz[D]. Wuhan: Wuhan University of Technology, 2018.
[37] 马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48-57. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f8d0ad56-4a9b-498c-9bfc-4bfca34bcc24
MA C, FENG A S, LIU C M, et al. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 48-57. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f8d0ad56-4a9b-498c-9bfc-4bfca34bcc24
[38] 从金瑶. 几种伟晶岩石英的矿石学特征及杂质去除工艺研究[D]. 绵阳: 西南科技大学, 2019.
CONG J Y. Study on oreological characteristics and impurity removal process of several pegmatite quartz[D]. Mianyang: Southwest University of Science and Technology, 2019.
[39] 侯清麟, 王迎霞, 侯熠徽. 剔除硅石矿中气液包裹体方法的研究[J]. 包装学报, 2019, 11(6): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-BZXB201906006.htm
HOU Q L, WANG Y X, HOU Y H. Study on gas-liquid inclusion methods for removing silica ores[J]. Packaging Journal, 2019, 11(6): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-BZXB201906006.htm
[40] BELASHEV B Z, SKAMNITSKAYA L S. Irradiation methods for removal of fluid inclusions from minerals[J]. Materials and Geoenvironment, 2009, 56(2): 138-147.
[41] YAN Q X, LI X H, WANG Z X, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1753-1759.
[42] LORITSCH K B., JAMES R D. Purified quartz and process for purifying quartz: U.S. Patent 5037625[P]. 1991-08-06.
-