Combined Experimental Study on Flotation—oxidation Leaching of a Gold Flotation Tailings in Laos
-
摘要:
老挝某金矿浮选尾矿中金品位为2.99 g/t,含金量较高,为高效回收该尾矿中的金,开展了详细的选矿试验研究。尾矿中金主要赋存于硫化物中,其次是连生体金和单体金,决定采取浮选—氧化浸出联合选别流程。采用石灰作为pH调整剂,以六偏磷酸钠和水玻璃为脉石矿物抑制剂,以CuSO4和Pb(NO3)2为活化剂,以丁铵黑药和丁基黄药作为捕收剂,在条件试验的基础上对金矿浮选尾矿通过“一粗三精三扫”的闭路流程试验,获得了金品位为28.57 g/t、回收率为67.36%的金精矿;同时,所得尾矿金品位为1.05 g/t。再以高锰酸钾作为氧化剂,以氰化钠作为浸出剂对该尾矿进行氧化浸出,最佳条件下金的浸出率为43.57%,相对于原矿浸出率为14.22%,且浸渣中金品位仅为0.6 g/t,金总回收率为81.58%,取得了较为满意的试验指标。
Abstract:The flotation tailing of a gold mine from Laos has a gold grade of 2.99 g/t, and the gold content is relatively high. Systematic beneficiation experimental studies were carried out to recover the tailings efficiently. Gold in tailings mainly occurs in sulfide, followed by intergrowth gold and monomer gold. Therefore, the flotation-oxidation leaching combined separation process was decided to employ upon that accountant above, and lime was used as pH regulator, sodium hexametaphosphate and sodium silicate were used as gangue dispersants, CuSO4 and Pb(NO3)2 were used as activators, and ammonium dibutyldithiophosphate and butyl xanthate were used as collectors. Through the closed-circuit process test of "one coarse, three cleaning and three scavenging" on the basis of condition tests, the gold concentrate with a gold grade of 28.57 g/t and recovery of 67.36%, and the gold tailings with a gold grade of 1.05 g/t were obtained respectively. Then by using potassium permanganate as the oxidant and sodium cyanide as the leaching agent for oxidize and leach the tailings, the leaching rate of gold, in the best performance, was 43.57%, which was 14.22% over the raw ore, and the gold grade was only 0.6 g/t in the leaching residue, and the total recovery of gold was 81.58%. The relatively satisfactory production index was obtained eventually.
-
Key words:
- gold tailings /
- pyrite /
- oxidizing leaching /
- flotation
-
-
表 1 尾矿多元素分析结果
Table 1. Multi-element analysis results of the tailings
/% 元素 Au* Ag* TFe S As Na2O 含量 2.99 8.72 1.65 0.78 0.03 0.10 元素 MgO Al2O3 CaO K2O SiO2 C 含量 4.11 8.32 13.58 1.23 56.31 3.27 注:Au、Ag含量单位为 g/t。 表 2 尾矿金物相分析结果
Table 2. Gold phase analysis results of the tailings
物相 石英和硅酸
盐中的金连生体金
和单体金硫化物
中的金碳酸盐
中的金氧化矿
中的金总金 含量/(g·t−1) 0.14 0.54 1.96 0.23 0.12 2.99 分布率/% 4.84 17.99 65.41 7.61 4.15 100.00 表 3 流程探索试验结果
Table 3. Results of trial tests
流程方案 产品名称 产率/% 金品位/ (g·t−1) 回收率/% 浸出率/% 直接浸出
试验浸渣 100.73 2.53 / 14.77 给矿 100.00 2.99 / 100.00 单一浮选
流程试验精矿 15.04 7.95 40.00 / 给矿 100.00 2.99 100.00 / 表 4 闭路试验结果
Table 4. Results of closed-circuit test
产品名称 产率/% Au品位 /(g·t−1) Au回收率/% 精矿 7.05 28.57 67.36 尾矿 92.95 1.05 32.64 给矿 100.00 2.99 100.00 -
[1] 明平田, 李飞. 某微细粒蚀变岩型金矿高效浮选新工艺研究[J]. 矿产综合利用, 2019(5): 127−133.
MING P T, LI F. New high-efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 127−133.
[2] 陈兰兰, 卢东方, 王毓华. 黄金矿山尾矿的组成、危害及资源化利用技术[J]. 矿产保护与利用, 2020, 40(5): 161−169.
CHEN L L, LU D F, WANG Y H. Composition, harm and resource utilization technology of gold mine tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 161−169.
[3] 廖璐, 李红立, 任大鹏. 无氰工艺回收利用黄金尾矿试验研究[J]. 矿产综合利用, 2019(2): 109−111.
LIAO L, LI H L, REN D P. Experimental Study on Non-cyanide Leaching of Tailings of Gold Ores[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 109−111.
[4] 钱志博, 孙志健, 万丽, 等. 某富硫高砷尾矿回收金银浮选试验研究[J]. 有色金属(选矿部分), 2020(6): 85−90.
QIAN Z B, SUN Z J, WAN L, et al. Experimental study on the recovery of gold and silver from a sulphur-rich and arsenic-rich tailings[J]. Nonferrous Metals(Mineral Processing Section), 2020(6): 85−90.
[5] 祁磊, 席欣月, 蔡鑫, 等. 北衙硫化矿选厂尾矿中金银铁综合回收实验研究[J]. 矿产综合利用, 2021(4): 182−187. doi: 10.3969/j.issn.1000-6532.2021.04.029
QI L, XI X Y, CAI X, et al. Experimental research on multipurpose recovery of gold, silver and iron in tailings of beiya sulfide ore concentrator[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 182−187. doi: 10.3969/j.issn.1000-6532.2021.04.029
[6] 武彪, 尚鹤, 温建康, 等. 精确调控搅拌浸出提高高硫金精矿的生物预氧化效率[J]. 中南大学学报(英文版), 2020, 27(5): 1416−1423. doi: 10.1007/s11771-020-4377-z
WU B, SHANG H, WEN J K, et al. Well-controlled stirring tank leaching to improve bio-oxidation efficiency of a high sulfur refractory gold concentrate[J]. Journal of Central South University, 2020, 27(5): 1416−1423. doi: 10.1007/s11771-020-4377-z
[7] 王国彬, 蓝卓越, 赵清平, 等. 浅谈卡林型金矿微生物预氧化技术研究现状[J]. 有色金属工程, 2021, 11(2): 63−72.
WANG G B, LAN Z Y, ZHAO Q P, et al. Discussion on the present situation and progress of bacterial pre-oxidation in carlin-type gold ore[J]. Nonferrous Metals Engineering, 2021, 11(2): 63−72.
[8] 白成庆, 陈国兰, 付绸琳, 等. 某浮选尾矿氧压预处理—氰化浸出金银试验研究[J]. 黄金, 2021, 42(9): 103−105+111.
BAI C Q, CHEN G L, FU C L, et al. Experimental research on gold and silver recovery from certain flotation tailings with oxygen pressure pretreatment-cyanidation leaching[J]. Gold, 2021, 42(9): 103−105+111.
[9] 邱廷省, 廖德华, 毛仁康, 等. 某难选金矿加温化学预氧化浸出技术[J]. 中国有色金属学报, 2008, 18(z1): 53−58.
QIU T S, LIAO D H, MAO R K, et al. Warming and chemical pre-oxidation leaching of refractory gold ores[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(z1): 53−58.
[10] 董再蒸, 韩跃新, 高鹏. 卡林型金矿化学氧化预处理技术研究现状[J]. 金属矿山, 2015(12): 92−97.
DONG Z Z, HAN Y X, GAO P. Research status on chemical pre-oxidation for carlin-type gold ore[J]. Metal Mine, 2015(12): 92−97.
[11] 唐道文, 储春利, 王锐. 高锰酸钾氧化预处理某难浸金矿的研究[J]. 有色金属(冶炼部分), 2013(8): 29−31+45.
TANG D W, CHU C L, WANG R. Study on oxidation pretreatment of refractory gold ore with potassium permanganate[J]. Nonferrous Metals(Extractive Metallurgy), 2013(8): 29−31+45.
[12] 许怀凤, 孙敬锋, 廖璐, 等. 某金矿石的过氧化物强化氰化浸出试验研究[J]. 湿法冶金, 2013, 32(3): 138−139.
XU H F, SUN J F, LIAO L, et al. Experimental study on strengthen cyanide leaching of gold using peroxide from a gold ore from inner mongolia[J]. Hydrometallurgy of China, 2013, 32(3): 138−139.
[13] 简永军, 陈玉明, 彭晓. 某含碳高砷微细粒金矿提金工艺研究[J]. 黄金, 2016, 37(10): 67−70.
JIAN Y J, CHEN Y M, PENG X. Research on gold recovery from one carbonaceous and highly arsenic microgranular gold ore[J]. Gold, 2016, 37(10): 67−70.
-