Study on Preparation and Performance of Iron Tailings-based Ceramsite Concrete
-
摘要:
随着矿冶行业的快速发展,尾矿堆积量逐年增多,特别是铁尾矿已成为国内研究者关注的焦点。先用铁尾矿制备轻质高强陶粒,然后以该陶粒作为轻骨料制备陶粒混凝土。采用正交试验研究水灰比、减水剂用量、砂用量、增稠剂用量对陶粒混凝土抗压强度及陶粒上浮的影响。通过试验确定该铁尾矿基陶粒混凝土的最佳方案为水灰比0.25、减水剂用量0.5%、砂用量20%、增稠剂用量0.12%。最终制得28 d抗压强度为67.33 MPa、抗折强度为8.1 MPa、体积密度1 940 kg/m3的高性能陶粒混凝土。研究中解决了轻骨料陶粒混凝土中陶粒上浮问题,实现了资源二次开发。
Abstract:With the rapid development of the mining and metallurgy industry, the amount of tailings accumulation is increasing year by year. In particular, iron tailings have become the focus of domestic researchers. Firstly, light high-strength ceramsite was prepared from iron tailings. Then the ceramsites were used as light aggregate to prepare ceramsite concrete. The effect of water-cement ratio, water reducing agent, sand and thickener on compressive strength and floating of ceramsite were studied with orthogonal test. Through experiments, the best scheme of the iron tailings-based ceramsite concrete was that the water-cement ratio was 0.25, the dosage of water reducer was 0.5%, the dosage of sand was 20% and the dosage of thickener was 0.12%. Finally, the 28-day high-performance ceramsite concrete with compressive strength of 67.33 MPa, flexural strength of 8.1 MPa and density of 1 940 kg/m3 was prepared. The floating problem of ceramsite in lightweight aggregate ceramsite concrete was solved.
-
Key words:
- iron tailings /
- ceramsite /
- light aggregate /
- ceramsite concrete
-
-
表 1 铁尾矿、黏土、钾长石的化学组成
Table 1. Chemical composition of iron tailings, clay and potash feldspar
/% 原料名称 SiO2 Al2O3 Fe2O3 MgO CaO TiO K2O Na2O P2O5 烧失 铁尾矿 49.72 12.73 21.05 2.61 1.62 1.43 2.12 0.96 0.31 7.45 黏土 62.69 14.52 8.89 0.54 1.13 0.99 3.27 0 0.12 7.85 钾长石 67.96 10.90 2.28 0.96 2.45 0. 67 12.28 1.56 0 0.94 表 2 陶粒物理性能
Table 2. Physical properties of ceramsite
陶粒尺寸
/mm桶压强度
/MPa堆积密度
/(kg·m−3)吸水率
/%表观密度
/(kg·m−3)10±2 14.42 916 4.46 1521 表 3 正交试验因素水平表
Table 3. Factor level tables for orthogonal experiments
水平 因素 水灰比A 减水剂用量B/% 砂用量C/% 增稠剂用量D/% 1 0.25 0.3 0 0.10 2 0.28 0.4 10 0.12 3 0.30 0.5 20 0.14 表 4 试验方案及试验结果
Table 4. Experimental scheme and experimental results
试验 水灰比
A减水剂用量
B砂用量
C增稠剂用量
D28 d
强度/MPa陶粒
上浮① 1 1 1 1 51.75 否 ② 1 2 2 2 54.36 否 ③ 1 3 3 3 64.37 否 ④
⑤
⑥
⑦
⑧
⑨2
2
2
3
3
31
2
3
1
2
32
3
1
3
1
23
1
2
2
3
148.40
57.33
62.50
44.53
47.25
47.37否
否
否
是
是
是表 5 试验结果分析
Table 5. Analysis of experimental results
指标 因素 A B C D 28 d抗压
强度/MPaK1 170.48 138.02 161.5 156.45 K2 168.23 158.94 150.13 161.39 K3 132.49 174.24 166.23 160.2 k1 56.83 46.01 53.83 52.15 k2 56.08 52.98 50.04 53.80 k3 44.16 58.08 55.41 53.4 极差R 12.67 12.07 5.37 1.65 因素主次 A B C D 优水平 A1 B3 C3 D2 最优方案 A1B3C3D2 (A—水灰比,B—减水剂用量,C—砂用量,D—增稠剂
用量)。 -
[1] 杨维鸽, 赵培, 李美兰, 等. 秦岭山区尾矿库周边耕地土壤重金属污染特征研究[J]. 辽宁农业科学, 2021(3): 16−21.
YANG W G, ZHAO P, LI M L, et al. Distribution characteristics of heavy metal pollution in cultivated land around tailings reservoir in Shangzhou[J]. Liaoning Agricultural Science, 2021(3): 16−21.
[2] 张鑫. 商洛市尾矿库安全管理信息系统研究与实现[D]. 西安: 西安理工大学, 2017.
ZHANG X. Research and implementation of safety management information system of tailings reservior in Shangluo[D]. Xi'an: Xi'an University of Technology, 2017.
[3] 张景书. 商洛市尾矿资源综合利用现状及其对策[J]. 商洛学院学报, 2013(4): 3−7.
ZHANG J S. The current state and countermeasures in comprehensive utilization of tailings resource of Shangluo city[J]. Journal of Shangluo University, 2013(4): 3−7.
[4] 全国尾矿库数原则上只减不增[J]. 中国环境监察, 2020(Z1): 11.
The number of tailings ponds in China will only decrease but not increase in principle[J]. Environmental monitoring in China, 2020(Z1): 11.
[5] 崔振华. 省应急管理厅集中开展尾矿库安全风险专项整治行动[J]. 吉林劳动保护, 2020(9): 8.
CUI Z H. The provincial emergency management department concentrated on the special rectification actions of tailings reservoir safety risks[J]. Jilin labor protection, 2020(9): 8.
[6] 刘文博, 姚华彦, 王静峰, 等. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020(S1): 268−270.
LIU W B, YAO H Y, WANG J F, et al. Current situation of comprehensive utilization of iron tailings[J]. Materials Review, 2020(S1): 268−270.
[7] 孟祥然, 周月鑫, 郭晓影. 铁尾矿综合利用研究综述[J]. 辽宁科技学院学报, 2019(3): 11−14.
MENG X R, ZHOU Y X, GUO X Y, et al. Summary of researching on comprehensive utilization of iron ore tailings[J]. Journal of Liaoning Institute of Science and Technology, 2019(3): 11−14.
[8] 顾晓薇, 王屾宇, 刘剑平, 等. 高硅型铁尾矿砂蒸压加气轻质混凝土的制备及其性能研究[J]. 金属矿山, 2022(1): 35−40.
GU X W, WANG S Y, LIU J P, et al. Preparation of autoclaved aerated lightweight concrete with high-silicon iron tailings and its properties study[J]. Metal Mine, 2022(1): 35−40.
[9] 刘刚, 封孝信, 胡晨光, 等. 利用铁尾矿制备陶粒研究[J]. 华北理工大学学报, 2021(3): 49−54.
LIU G, FENG X X, HU C G, et al. Research on preparation of ceramsite from iron tailings[J]. Journal of North China University of Science and Technology, 2021(3): 49−54.
[10] 夏溢, 程寒飞, 刘克权, 等. 铁尾矿粉烧结透水砖的制备及其性能[J]. 安徽工业大学学报, 2021(3): 237−241.
XIA Y, CHENG H F, LIU K Q, et al. Preparation of sintered permeable brick with iron tailing powder and its properties[J]. Journal of Anhui University of Technology, 2021(3): 237−241.
[11] 李德忠, 倪文, 刘杰, 等. 铁尾矿制备高强高性能透水砖[J]. 新型建筑材料, 2016(11): 52−54.
LI D Z, NI W, LIU J, et al. High strength and performance water permeable brick prepared by iron tailings[J]. New Building Materials, 2016(11): 52−54.
[12] 李辛庚, 闫风洁, 岳雪涛, 等. 陶粒混凝土的研究进展[J]. 硅酸盐通报, 2020(11): 3407−3418+3452.
LI X G, YAN F G, YUE X T, et al. Research progress on ceramsite concrete[J]. Bulletin of the Chinese Ceramic Sosiety, 2020(11): 3407−3418+3452.
[13] 王杰, 宁宁, 蒋姗, 等. 轻质混凝土性能及应用现状研究[J]. 低温建筑技术, 2020(10): 22−25+29.
WANG J, NING N, JIANG S, et al. Research status of properties and application of lightweight concrete[J]. Low Temperature Building Technology, 2020(10): 22−25+29.
[14] 丁庆军, 张勇, 王发洲, 等. 高强轻集料混凝土分层离析控制技术的研究[J]. 武汉大学报, 2002, 35(3): 59−62.
DING Q J, ZHANG Y, WANG F Z, et al. Research on control technology of segregation of high strength lightweight aggregate concrete[J]. Engineering Journal of Wuhan University, 2002, 35(3): 59−62.
[15] 李渝军, 丁建彤. 泵送高强轻骨料混凝土的抗离析性能[J]. 混凝土, 2005(3): 42−45.
LI Y J, DING J T. Segregation capability of fresh high strength lightweight aggregate concrete[J]. Concrete, 2005(3): 42−45.
-