基于磨矿动力学某铜矿磨矿介质配比优化试验研究

张志鹏, 周强, 肖庆飞, 谢浩松, 任英东. 基于磨矿动力学某铜矿磨矿介质配比优化试验研究[J]. 矿产保护与利用, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042
引用本文: 张志鹏, 周强, 肖庆飞, 谢浩松, 任英东. 基于磨矿动力学某铜矿磨矿介质配比优化试验研究[J]. 矿产保护与利用, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042
ZHANG Zhipeng, ZHOU Qiang, XIAO Qingfei, XIE Haosong, REN Yingdong. Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042
Citation: ZHANG Zhipeng, ZHOU Qiang, XIAO Qingfei, XIE Haosong, REN Yingdong. Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66-72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042

基于磨矿动力学某铜矿磨矿介质配比优化试验研究

  • 基金项目: 国家自然科学基金地区科学基金(51964044);云南省地方高校(部分)联合专项(2018FH001-051);云南省教育厅基金(2019J0738)
详细信息
    作者简介: 张志鹏(1994—),男,山西忻州人,硕士研究生,主要从事碎磨理论与工艺的研究,E-mail:1084122232@qq.com。
    通讯作者: 肖庆飞(1980—),男,云南昆明人,博士,教授,主要从事碎磨理论与工艺的研究,E-mail:13515877@qq.com
  • 中图分类号: TD921+.4

Experimental Study on Optimization of Grinding Medium Ratio in a Copper Mine Based on Grinding Kinetics

More Information
    Corresponding author: XIAO Qingfei
  • 针对云南某铜矿磨矿介质配比m(Φ80)∶m(Φ60) =50∶50与球磨机给矿力学性质及粒度不匹配,导致磨矿细度及中间易选粒级产率偏低等问题,基于磨矿动力学原理可得到磨矿介质推荐配比m(Φ70)∶m(Φ60)∶m(Φ50)∶ m(Φ40) =15∶30∶10∶45。对比试验结果表明,推荐配比与现场配比相比,磨矿前期(4 min),+0.3 mm粒级物料产率提高1.01百分点,0.3~0.074 mm粒级产率降低7.88百分点;磨矿细度(−0.074 mm)在12 min时达到79.85%,且中间易选粒级与过粉碎粒级产率分别提高3.44、1.79百分点。最终推荐选厂选择基于磨矿动力学原理所得介质配比 m(Φ70)∶m(Φ60)∶m(Φ50)∶m(Φ40) =15∶30∶10∶45。

  • 加载中
  • 图 1  标准试件容重及抗压强度

    Figure 1. 

    图 2  标准试件静弹性模量及泊松比

    Figure 2. 

    图 3  +8 mm粒级物料的磨矿动力学曲线

    Figure 3. 

    图 4  0.45~8 mm粒级物料的磨矿动力学曲线

    Figure 4. 

    图 5  0.3~0.45 mm粒级物料的磨矿动力学曲线

    Figure 5. 

    图 6  0.15~0.3 mm粒级物料的磨矿动力学曲线

    Figure 6. 

    图 7  各粒级物料随时间变化趋势

    Figure 7. 

    图 8  不同级配下磨矿细度变化趋势

    Figure 8. 

    图 9  不同级配下中间易选级别变化趋势

    Figure 9. 

    表 1  球磨机总给矿正累积粒度分布

    Table 1.  Positive cumulative particle size distribution of ball mill total feed

    粒级/mm+15+12+2+0.15+0.074
    皮带给矿/%0.517.7368.8589.7293.69
    螺旋分级机返砂/%000.4234.6472.88
    下载: 导出CSV

    表 2  磨矿动力学参数m

    Table 2.  Grinding kinetic parameter m value

    粒级/mm8070605040
    +81.961.120.750.810.78
    0.45~81.561.260.740.740.75
    0.3~0.451.281.390.950.750.72
    0.15~0.21.061.481.220.760.62
    下载: 导出CSV

    表 3  磨矿动力学参数lnk

    Table 3.  Grinding kinetic parameter lnk value

    粒级/mm8070605040
    +8−3.16−1.56−1.57−1.98−2.18
    0.45~8−2.73−1.98−1.35−1.62−1.88
    0.3~0.45−2.42−2.35−1.69−1.47−1.64
    0.15~0.2−1.97−2.61−2.20−1.44−1.29
    下载: 导出CSV

    表 4  各粒级最佳球径

    Table 4.  The best ball diameter of each particle size

    粒级/mm+80.45~80.3~0.450.15~0.2
    球径/mm70605040
    下载: 导出CSV

    表 5  球磨机初装球配比方案

    Table 5.  Proportion scheme of ball mill initially loaded

    级别/mm配矿
    产率/%
    扣除−0.15mm后
    待磨产率γ/%
    各组适宜
    球径/mm
    推荐
    球比/%
    +88.8313.007015
    0.45~20.2229.746030
    0.3~0.458.0911.905010
    0.15~0.330.8445.364045
    −0.1532.02
    合计100.00100.00100.00
    下载: 导出CSV

    表 6  磨矿介质对比方案

    Table 6.  Comparison scheme of grinding media

    配比名称配比内容/%平均球径/mm
    推荐配比m(Φ70)∶m(Φ60)∶m(Φ50)∶m(Φ40) =15∶30∶10∶4551.5
    选厂配比m(Φ80)∶m(Φ60) =50∶5070.0
    下载: 导出CSV
  • [1]

    MU Y F, CHENG Y P, PENG Y J. The interaction of grinding media and collector in pyrite flotation at alkaline pH[J]. Minerals Engineering, 2020, 152: 106344. doi: 10.1016/j.mineng.2020.106344

    [2]

    LARSSON S, PÅLSSON B I, PARIAB M, et al. A novel approach for modelling of physical interactions between slurry,grinding media and mill structure in wet stirred media mills[J]. Minerals Engineering, 2020, 148: 106180. doi: 10.1016/j.mineng.2019.106180

    [3]

    DÍAZ E, L VOISIN, KRACHT W, et al. Using advanced mineral characterisation techniques to estimate grinding media consumption at laboratory scale[J]. Minerals Engineering, 2018, 121: 180−188. doi: 10.1016/j.mineng.2018.03.015

    [4]

    段希祥.碎矿与磨矿(第三版)[M].北京: 冶金工业出版社,2013.

    DUAN X X. Ore crushing and grinding (3th Edition) [M]. Beijing: Metallurgical Industry Press, 2013.

    [5]

    ZHOU W T, HAN Y X, SUN Y S, et al. Multi-scale impact crushing characteristics of polymetallic sulphide ores[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1929−1938. doi: 10.1016/S1003-6326(19)65100-9

    [6]

    LIU S H, LI Q L, SONG J W. Study on the grinding kinetics of copper tailing powder[J]. Powder Technology, 2018, 330: 105−113. doi: 10.1016/j.powtec.2018.02.025

    [7]

    IWASAKI T, YABUUCHI T, NAKAGAWA H, et al. Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis[J]. Advanced Powder Technology, 2010, 21(6): 623−629. doi: 10.1016/j.apt.2010.04.008

    [8]

    CURRY J A, ISMAY M J L, JAMESON G J. Mine operating costs and the potential impacts of energy and grinding[J]. Minerals Engineering, 2014, 56: 70−80. doi: 10.1016/j.mineng.2013.10.020

    [9]

    ZHANG X L, HAN Y X, GAO P, et al. Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite[J]. Powder Technology, 2020, 360: 1028−1036. doi: 10.1016/j.powtec.2019.11.014

    [10]

    NADOLSKI S, KLEIN B, KUMAR A, et al. An energy benchmarking model for mineral comminution[J]. Minerals Engineering, 2014, 65: 178−186. doi: 10.1016/j.mineng.2014.05.026

    [11]

    MATIJASIC G, KURAJICA S. Grinding kinetics of amorphous powder obtained by solgel process[J]. Powder Technology, 2010, 197(3): 165−169. doi: 10.1016/j.powtec.2009.09.010

    [12]

    OZKAN A, YEKELER M, CALKAYA M. Kinetics of wet grinding of zeolite in a steel ball mill in comparison to dry grinding[J]. International Journal of Mineral Processing, 2009, 90(1/2/3/4): 67−73. doi: 10.1016/j.minpro.2008.10.006

    [13]

    RODRÍGUEZ B A, JUAN M, AGUADO M, et al. Transient stateanalysis by simulation in a closed grinding circuit[J]. Minerals Engineering, 2011, 24(5): 473−475. doi: 10.1016/j.mineng.2010.12.005

    [14]

    BAZIN C, OBIANG P. Should the slurry density in a grinding mill be adjusted as a function of grinding media size[J]. Minerals Engineering, 2007, 20(8): 810−815. doi: 10.1016/j.mineng.2007.01.017

    [15]

    FUERSTENAU D W, PHATAK P B, KAPUR P C, et al. Simulation ofthe grinding of coarse/fine(heterogeneous) systems in a ball mill[J]. International Journal of Mineral Processing, 2011, 99(1-4): 32−38. doi: 10.1016/j.minpro.2011.02.003

    [16]

    段希祥.碎矿与磨矿(第二版)[M].北京: 冶金工业出版社,2006:179-180.

    DUAN X X. Ore crushing and grinding (2nd Edition) [M]. Beijing: Metallurgical Industry Press, 2006: 179-180.

    [17]

    段希祥. 磨矿动力学参数与磨矿时间的关系研究[J]. 昆明工学院学报, 1988, 13(5): 23−33.

    DUAN X X. Relationship between grinding kinetic parameters and grinding time[J]. Journal of Kunming Institute of Technology, 1988, 13(5): 23−33.

    [18]

    李同清, 彭玉兴. 研磨介质形状对铁矿石磨矿动力学研究[J]. 有色金属(选矿部分), 2018(1): 84−89+99.

    LI T Q, PENG Y X. Effect of grinding media shape on milling kinetics of iron ore particles[J]. Nonferrous Metals (Beneficiation), 2018(1): 84−89+99.

    [19]

    沈传刚.永平铜矿磨矿动力学模型的建立及应用研究[D].昆明:昆明理工大学,2017.

    SHEN C G. Research on the establishment and application of grinding dynamics model of Yongping Copper Mine[D]. Kunming: Kunming University of Science and Technology, 2017.

    [20]

    侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133.

    HOU Y, YIN W Z, ZHU J J, et al. Grinding dynamics behavior of gold-copper ore in Zijinshan under different grinding methods[J]. Journal of Central South University (Natural Science Edition), 2017, 48(5): 1127−1133.

    [21]

    侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711.

    HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetic parameters on grinding speed[J]. Journal of Northeastern University (Natural Science Edition), 2013, 34(5): 708−711.

    [22]

    DAVIS E W. Fine crushing in ball mills[J]. Transactions AIME, 1919, 61: 250−296.

  • 加载中

(9)

(6)

计量
  • 文章访问数:  107
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2022-07-02
录用日期:  2022-07-02
刊出日期:  2023-02-15

目录