某铅锌矿立磨机与球磨机磨矿效果对比试验研究

任英东, 肖庆飞, 周强, 谢浩松, 张志鹏. 某铅锌矿立磨机与球磨机磨矿效果对比试验研究[J]. 矿产保护与利用, 2023, 43(1): 73-78. doi: 10.13779/j.cnki.issn1001-0076.2022.07.017
引用本文: 任英东, 肖庆飞, 周强, 谢浩松, 张志鹏. 某铅锌矿立磨机与球磨机磨矿效果对比试验研究[J]. 矿产保护与利用, 2023, 43(1): 73-78. doi: 10.13779/j.cnki.issn1001-0076.2022.07.017
REN Yingdong, XIAO Qingfei, ZHOU Qiang, XIE Haosong, ZHANG Zhipeng. Comparative Experimental Study on the Grinding Effect of a Lead-zinc Mine Through Vertical Mill and Ball Mill[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 73-78. doi: 10.13779/j.cnki.issn1001-0076.2022.07.017
Citation: REN Yingdong, XIAO Qingfei, ZHOU Qiang, XIE Haosong, ZHANG Zhipeng. Comparative Experimental Study on the Grinding Effect of a Lead-zinc Mine Through Vertical Mill and Ball Mill[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 73-78. doi: 10.13779/j.cnki.issn1001-0076.2022.07.017

某铅锌矿立磨机与球磨机磨矿效果对比试验研究

  • 基金项目: 国家自然科学基金地区科学基金(51964044);云南省地方高校(部分)联合专项(2018FH001-051);云南省教育厅基金(2019J0738)
详细信息
    作者简介: 任英东(1997—),男,硕士研究生. 主要研究方向为碎磨理论与工艺,E-mail:r13204761215@163.com
    通讯作者: 肖庆飞(1981—),博士,教授. 主要研究方向为碎磨理论与工艺,E-mail:13515877@qq.com
  • 中图分类号: TD921+.4

Comparative Experimental Study on the Grinding Effect of a Lead-zinc Mine Through Vertical Mill and Ball Mill

More Information
  • 立磨机和球磨机都是大型工业磨粉设备,被广泛应用于选矿、冶金、化工和煤炭等行业。本文针对某铅锌矿对比两种磨机的磨矿效果,采用立磨机与球磨机进行磨矿试验,并对试验产品进行筛分分析、单体解离度分析及浮选试验。试验结果表明:立磨机磨矿试验产品中粗粒级含量较球磨机试验产品下降了0.6百分点,方铅矿和闪锌矿单体解离度分别提高2.28和1.60百分点;立磨—浮选试验产品中铅精矿中铅品位及累计回收率较球磨机分别提高0.65和0.61,锌精矿中锌品位及累计回收率较之分别提高0.34和1.03百分点,硫精矿中铅和锌含量分别下降0.02、0.06百分点。综上所述针对该铅锌矿立磨机磨矿效果均优于球磨机。

  • 加载中
  • 图 1  球磨机破碎原理

    Figure 1. 

    图 2  a、b立磨机工作原理

    Figure 2. 

    图 3  磨矿试验原料粒度特性曲线

    Figure 3. 

    图 4  浮选试验流程

    Figure 4. 

    图 5  试验结果综合指标

    Figure 5. 

    图 6  立磨试验产品MLA分析总图(部分区域)

    Figure 6. 

    图 7  球磨试验产品MLA分析总图(部分区域)

    Figure 7. 

    表 1  −0.074+0.045 mm粒级中其他粒级占比

    Table 1.  Other size classes proportion in −0.074+0.019 mm size class /%

    粒级/mm立磨方案球磨方案
    −0.074+0.04530.9220.26
    −0.045+0.02826.9851.02
    −0.028+0.01926.9813.68
    −0.01915.1215.04
    总计100.00100.00
    下载: 导出CSV

    表 2  立磨和球磨试验产品3/4解离~完全解离累计解离度

    Table 2.  Dissociation characteristics of vertical mill and ball mill test products /%

    矿物名称立磨机试验方案球磨机试验方案
    方铅矿90.7488.46
    闪锌矿92.3390.73
    黄铁矿96.4694.09
    下载: 导出CSV

    表 3  立磨及球磨磨矿产品浮选对比试验指标

    Table 3.  Comparative flotation test indexes of vertical and ball mill products

    试验方案产品名称产率/%品位/%回收率/%
    PbZnPbZn
    个别累计个别累计个别累计个别累计个别累计
    立磨试验铅精矿12.6212.6262.5662.563.513.5174.7374.734.154.15
    中矿13.7816.4034.6956.1411.215.2812.4087.133.978.12
    中矿23.4019.8014.5949.0111.496.354.6991.823.6611.78
    中矿31.0820.8810.4547.0113.126.71.0792.891.3313.11
    中矿40.8721.755.0245.3215.837.070.4293.311.3014.41
    锌精矿14.836.551.3827.5354.3526.211.9395.2475.4489.85
    中矿53.9240.472.3625.19.9024.630.8796.113.6493.49
    中矿63.4543.920.9823.206.7923.230.3296.432.2095.69
    硫精矿56.08100.000.6710.570.8210.663.57100.004.31100.00
    给矿100.00——10.57——10.66——100.00——100.00——
    球磨试验铅精矿12.912.9061.9161.913.773.7774.1374.134.484.48
    中矿13.7116.6134.2455.7411.835.5711.7785.904.038.51
    中矿23.6320.2414.2248.311.76.674.7890.683.9012.41
    中矿31.2021.449.8846.1413.817.071.1091.781.5313.94
    中矿41.0122.456.0244.3315.227.440.5792.351.4215.36
    锌精矿14.9837.431.6527.2554.0126.072.2994.6474.4189.77
    中矿54.2241.653.3624.839.8324.431.3295.963.8293.59
    中矿63.4145.061.6523.086.2623.050.5296.481.9695.55
    硫精矿54.94100.000.6910.780.8810.873.52100.004.45100.00
    给矿100.00——10.78——10.87——100.00——100.00——
    下载: 导出CSV
  • [1]

    程武忠. 铅锌硫化矿选矿工艺及机理浅析[J]. 世界有色金属, 2019(21): 52−53. doi: 10.3969/j.issn.1002-5065.2019.21.032

    CHENG W Z. A brief analysis of the beneficiation process and mechanism of lead-zinc sulfide ore[J]. World Nonferrous Metals, 2019(21): 52−53. doi: 10.3969/j.issn.1002-5065.2019.21.032

    [2]

    王潇, 文书明, 韩广, 等. 硫化铅锌矿石浮选分离技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 168−178. doi: 10.13779/j.cnki.Issn1001-0076.2021.05.023

    WANG X, WEN S M, HAN G, et al. Research progress of flotation separation technology for lead-zinc sulfide ores[J]. Mineral Conservation and Utilization, 2021, 41(5): 168−178. doi: 10.13779/j.cnki.Issn1001-0076.2021.05.023

    [3]

    周源, 陈江安. 铅锌选矿技术[M]. 北京: 化学工业出版社, 2012: 20−21.

    ZHOU Y, CHEN J A. Lead-zinc beneficiation technology [M]. Beijing: Chemical Industry Press, 2012: 20−21.

    [4]

    JIA Y, HUANG XP, HUANG K, et al. Synthesis, flotation performance and adsorption mechanism of 3-( ethylamino)-N-phenyl-3 -thioxopropanamide onto galena/sphalerite surfaces[J]. Journal of Industrial and Engineering Chemistry, 2019, 77(C): 416−425.

    [5]

    唐攀科, 王春艳, 梅友松, 等. 中国铅锌矿产资源成矿特征与资源潜力评价[J]. 地学前缘, 2018, 25(3): 31−49. doi: 10.13745/j.esf.2018.03.003

    TANG P K, WANG C Y, MEI Y S, et al. Evaluation of metallogenic characteristics and resource potential of lead-zinc mineral resources in China[J]. Geological Foreground, 2018, 25(3): 31−49. doi: 10.13745/j.esf.2018.03.003

    [6]

    唐攀科, 王春艳. 中国铅锌矿资源潜力评价及其成矿远景预测[J]. 矿床地质, 2014, 33(S1): 819-820. DOI:10.16111/j.0258-7106. 2014. s1.412.

    TANG P K, WANG C Y. Evaluation of the resource potential of lead-zinc ore in China and its prospective prediction of mineralization[J]. Mineral Deposit Geology, 2014, 33(S1): 819-820. DOI: 10.16111/j. 0258-7106. 2014. s1.412.

    [7]

    NWOYE CI. Model for predicting the initial solution ph at pre - assumedfinal ph and concentration of dissolved lead during leaching of galena inbutanoic acid solution[J]. Journal of Enginering Science and Technolo-gy, 2010, 5(2): 176.

    [8]

    ZHANG, G. W. , ZHAO, et al. Research and application of vertical screw stirred mill. XXV. In: International Mineral Processing Congress, Brisbane, Australia, 1437–1443.

    [9]

    X. XIAO, G. W. ZHANG, Y. G. LI, et al. Intensifying separation of reverse flotation tailings from concentrator of baogang group by fine grinding with the stirred mill Min. Metall. Eng. , 2011, 31 (2) , 32-34.

    [10]

    段希祥. 提高磨矿过程矿物单体解离度及改善磨矿产品质量研究[J]. 有色金属(选矿部分), 1998(3): 33−38+43.

    DUAN X X. Research on improving the dissociation degree of mineral monomer in grinding process and improving the quality of grinding products[J]. Non-ferrous Metals (Mineral Processing), 1998(3): 33−38+43.

    [11]

    XIE H, LIU Y, RAO B, et al. Selective passiv ation b ehav ior of g alenasurface by sulfuric acid and a novel flotation separation method forcopper - lead sulfide ore without collector and inhibitor[J]. Separationand Purification Technology, 2021, 267(1/2): 118621.

    [12]

    杨稳权, 方世祥, 庞建涛, 等. 胶磷矿不同磨矿细度单体解离度测定及其浮选应用[J]. 武汉工程大学学报, 2014, 36(4): 31−34. doi: 10.3969/j.issn.1674-2869.2014.04.007

    YANG Y Q, FANG S X, PANG J T, et al. Determination of monomer dissociation degree of colloidal phosphate ore with different grinding fineness and its flotation application[J]. Journal of Wuhan Engineering University, 2014, 36(4): 31−34. doi: 10.3969/j.issn.1674-2869.2014.04.007

    [13]

    张跃军, 陈东, 余悦. 立磨机与球磨机对钾石盐矿的磨矿性能对比研究[J]. 矿产保护与利用, 2013(6): 33−36. doi: 10.13779/j.cnki.Issn1001-0076.2013.06.008

    ZHANG Y J, CHEN D, YU Y. A comparative study on the grinding performance of vertical mill and ball mill for potash salt ore[J]. Mineral Conservation and Utilization, 2013(6): 33−36. doi: 10.13779/j.cnki.Issn1001-0076.2013.06.008

    [14]

    董天龙, 薛春华. 塔磨机在铜精矿细磨中的应用[J]. 云南冶金, 2017, 46(1): 19−22. doi: 10.3969/j.issn.1006-0308.2017.01.004

    DONG T L, XUE C H. Application of tower mill in fine grinding of copper concentrate[J]. Yunnan Metallurgy, 2017, 46(1): 19−22. doi: 10.3969/j.issn.1006-0308.2017.01.004

    [15]

    陈来保, 谢蔼祥, 阚延松. TM系列塔磨机在某铜矿细磨再选工艺中的应用[J]. 现代矿业, 2017, 33(3): 191−192.

    CHEN L B, XIE A X, KAN Y S. Application of TM series tower mill in a copper ore fine grinding and re-election process[J]. Modern Mining, 2017, 33(3): 191−192.

    [16]

    段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 210-213.

    DUAN X X. Ore crushing and grinding [M]. Beijing: Metallurgical Industry Press, 2012: 210−213.

    [17]

    李腾飞, 林蜀勇, 张博, 等. 不同转速率下球磨机内钢球的碰撞研究[J]. 中南大学学报(自然科学版), 2019, 50(2): 251−256.

    LI T F, LIN S Y, ZHANG B, et al. Study on the collision of steel balls in ball mills at different rotation rates[J]. Journal of Central South University (Natural Science Edition), 2019, 50(2): 251−256.

    [18]

    XIAO X, ZHANG G W, FENG Q M, et al. The liberation effect of magnetite fine ground by vertical stirred mill and ball mill, Minerals Engineering, 2012, 34: 63−69.

    [19]

    陈彦如, 王腾宇, 纪鸿, 等. 超细搅拌磨的研发现状及发展趋势[J]. 中国非金属矿工业导刊, 2013(3): 46−48+20. doi: 10.3969/j.issn.1007-9386.2013.03.015

    CHEN Y R, WANG T Y, JI H, et al. Current status and development trend of ultrafine stirred mill[J]. China Nonmetallic Mining Industry Journal, 2013(3): 46−48+20. doi: 10.3969/j.issn.1007-9386.2013.03.015

    [20]

    张国旺, 黄圣生, 李自强, 等. 超细搅拌磨机的研究现状和发展[J]. 有色矿冶, 2006(S1): 123−125+127.

    ZHANG G W, HUANG S S, LI Z Q, et al. Research status and development of ultrafine stirred mill[J]. Nonferrous Mining and Metallurgy, 2006(S1): 123−125+127.

    [21]

    GAO M W, E. FORSSBERG, Prediction of product size distributions for a stirred ball mill powder technol. , 1995, 84: 101-106.

    [22]

    R. HOGG, Breakage mechanisms and mill performance in ultrafine grinding Powder Technology, 1999, 105: 135−140.

    [23]

    曾桂忠, 段希祥. 立式球磨机在铝土矿选择性磨矿的试验研究[J]. 矿山机械, 2009, 37(17): 58−60.

    ZENG G Z, DUAN X X. Experimental study of vertical ball mill in selective grinding of bauxite ore[J]. Mining Machinery, 2009, 37(17): 58−60.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  48
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2022-08-25
刊出日期:  2023-02-15

目录