Risk Assessment and Pollution Source Analysis of Heavy Metals in the Downstream Soil of a Gold Mining Area
-
摘要:
为定量评价某金矿对下游土壤中重金属的污染程度,基于潜在生态危害指数法及风险评价编码法,从重金属总量及化学形态两个维度来评价土壤的生态风险,并在分析重金属的富集系数与次生态、原生态相关性基础上,应用Pb同位素比值示踪土壤重金属来源。结果显示,随着与矿区距离的增大,除Cr外土壤中重金属大致逐渐减弱。土壤重金属总体呈现低风险。Cd具有较高的单项系数(均值72.50),但其有效态占比较低,集中在10%~17%,而Pb虽然总量较少,但具有较高的有效态占比,集中在15%~30%,Pb、Cd元素带来的潜在生态风险应重点关注。Pb、Cd、Zn次生态含量与其富集系数之间存在显著相关性,R2值分别为0.765 7、0.911 5、0.602 9,表明这三种重金属与矿区生产活动更为相关,即人为来源可能性更大,而Cu、Cr主要以自然来源为主。Pb同位素比值关系显示,土壤样品整体位于尾矿源(人为源)及成土母质(自然源)端元之间。随着与矿区距离的减小,重金属含量及可交换态大致呈现增大的趋势,206Pb/207Pb同位素比值呈现下降趋势,更偏向人为源,表明矿区生产活动对靠近矿区的土壤区域输入的重金属贡献更大,结合采样点位,矿区西北边界400 m以内区域需要重点关注。
Abstract:In order to quantitatively evaluate the degree of pollution of heavy metals in the downstream soil by a gold mine, based on the potential ecological hazard index method and the risk evaluation coding method, the ecological risk of the soil is evaluated from the two dimensions of total amount of heavy metals and chemical morphology, and on the basis of analyzing the correlation between the enrichment coefficient of heavy metals and the sub-ecology and the original ecology, the Pb isotope ratio is applied to trace the source of heavy metals in the soil. The results showed that with the increase of the distance from the mine, the heavy metals in the soil except Cr gradually weakened. Soil heavy metals are generally at low risk. Cd has a high single coefficient (mean value of 72.50), but its active state proportion is relatively low, concentrated in 10% to 17%, while Pb, the total amount is small, but has a higher proportion of active state, concentrated in 15% to 30%, Pb, Cd elements brought by the potential ecological risks should be paid attention to. There was a significant correlation between the sub-ecological content of Pb, Cd and Zn and their enrichment coefficients, and the R2 values were 0.765 7, 0.911 5 and 0.602 9, respectively, indicating that these three heavy metals were more related to the production activities in the mining area, that is, anthropogenic sources were more likely, while Cu and Cr were mainly based on natural sources. The Pb isotope ratio relationship showed that the soil sample as a whole was located between the tailings source (anthropogenic source) and the soil-forming matrix (natural source) terminal element. With the decrease of the distance from the mine, the heavy metal content and exchangeable state showed a generally increasing trend, and the isotope ratio of 206Pb/207Pb showed a downward trend, which was more inclined to anthropogenic sources, indicating that the production activities of the mining area contributed more to the heavy metals imported in the soil area near the mining area.
-
Key words:
- gold deposit area /
- soil /
- heavy metals /
- chemical forms /
- Pb isotopes
-
-
表 1 风险评价编码法判定标准[26]
Table 1. Judgment criteria of risk evaluation coding method
风险级别 无风险 低风险 中风险 高风险 极高风险 F1+F2质量分数/% <1 1~10 11~30 31~50 >50 表 2 重金属污染潜在生态危害等级划分
Table 2. Classification of potential ecological hazards of heavy metal pollution
Eri 单因子潜在生态危害程度 RI 综合潜在生态风险程度 Eri<40 低 <150 低 40≤Eri≤80 中 ≥150~300 中 80≤Eri≤160 较重 ≥300~600 重 160≤Eri≤320 重 ≥600 严重 320≤Eri 严重 表 3 重金属的毒性响应系数[28]
Table 3. Toxicity response coefficient of heavy metals
元素 Cr Cu Zn Cd Pb 毒性系数 2 5 1 30 5 表 4 矿区下游表层土壤重金属含量
Table 4. Heavy metal content of surface soil in the downstream of the mining area
样品号 重金属含量/(mg·kg-1) Pb Cu Zn Cd Cr A 26.40 17.64 80.21 0.22 19.32 B 24.30 16.52 79.62 0.23 21.35 C 25.30 16.35 72.36 0.19 20.24 D 19.32 17.24 59.65 0.19 20.23 E 18.54 15.21 58.65 0.22 19.68 F 19.56 13.24 57.25 0.19 19.32 G 18.75 13.35 64.35 0.18 19.14 H 17.35 13.65 54.36 0.17 19.36 I 17.58 13.32 54.26 0.15 20.14 中国土壤A层背景值 23.50 20.70 68.00 0.08 57.30 最大值 26.40 17.64 80.21 0.23 21.35 最小值 17.35 13.24 54.26 0.15 19.14 算术均值 20.79 15.17 64.52 0.19 19.86 标准差 3.32 1.71 9.75 0.02 0.66 变异系数 0.16 0.11 0.15 0.13 0.03 均值与背景值比 0.88 0.73 0.95 2.42 0.35 表 5 矿区下游表层土壤重金属化学形态及其含量
Table 5. Contents of various chemical forms of heavy metals in downstream surface soils of the mining area
元素 采样点 化学形态/(mg·kg-1) 覆盖率R/% 离子可交换态(F1) 碳酸盐结合态(F2) 铁锰氧化物结合态(F3) 有机物结合态(F4) 残渣态(F5) Pb A 2.99 1.22 2.54 3.07 15.86 97 B 3.60 1.89 3.32 1.48 15.95 108 C 6.49 0.66 3.07 1.48 14.74 105 D 4.52 0.21 1.12 1.61 13.03 106 E 2.12 1.16 0.67 1.11 12.55 95 F 2.40 2.51 2.16 0.92 13.02 107 G 3.51 2.05 1.04 1.96 11.31 106 H 2.91 2.69 0.72 0.67 11.75 108 I 2.67 2.47 2.52 0.20 11.48 110 Cd A 0.029 0.005 0.001 0.014 0.189 108 B 0.023 0.007 0.002 0.02 0.198 108 C 0.014 0.006 0.002 0.017 0.136 92 D 0.014 0.005 0.005 0.016 0.137 93 E 0.023 0.012 0.002 0.021 0.145 92 F 0.014 0.008 0.001 0.019 0.155 104 G 0.018 0.005 0.002 0.021 0.118 91 H 0.015 0.004 0.003 0.015 0.139 103 I 0.013 0.003 0.001 0.015 0.125 105 Cu A 1.80 0.53 2.17 2.38 9.91 95 B 1.95 0.84 2.41 3.12 9.25 106 C 2.15 0.98 2.35 2.05 10.15 108 D 0.21 1.69 2.50 2.91 10.07 101 E 1.87 1.02 2.05 2.12 9.48 109 F 1.64 0.26 1.52 2.12 9.06 110 G 1.66 0.53 1.25 2.08 9.28 111 H 0.16 0.27 2.09 1.65 9.31 99 I 1.63 0.80 1.58 1.30 8.87 106 Cr A 0.97 1.16 1.93 2.90 16.54 122 B 0.21 0.85 3.20 2.99 19.11 124 C 1.21 1.21 1.82 1.65 15.15 104 D 0.81 0.81 1.62 2.01 16.25 106 E 0.20 1.77 1.85 1.69 15.24 105 F 0.39 0.19 1.84 1.74 16.63 108 G 1.72 0.96 1.76 1.63 15.94 115 H 0.39 1.16 1.45 1.84 16.28 109 I 0.81 0.81 1.31 1.81 16.53 106 Zn A 11.09 5.61 8.12 5.14 50.14 100 B 8.89 3.98 8.34 5.21 49.69 96 C 8.32 4.34 7.50 4.47 50.24 103 D 5.14 2.68 3.26 2.98 49.39 106 E 7.35 2.93 1.02 3.25 50.14 110 F 7.10 2.29 1.25 3.31 48.35 109 G 6.31 3.86 3.24 3.30 56.21 113 H 4.21 2.17 4.94 1.15 49.48 114 I 2.18 4.88 3.24 1.68 48.84 112 表 6 样品Pb同位素组成
Table 6. Pb isotopic composition of samples
样品编号 样品来源及特征 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb O 尾矿 37.536 15.498 17.569 S 成土母质 36.454 15.424 18.015 A 土壤 37.137 15.501 17.521 B 土壤 37.029 15.498 17.325 C 土壤 37.025 15.315 17.684 D 土壤 37.105 15.306 17.714 E 土壤 36.832 15.289 17.824 F 土壤 36.985 15.168 17.834 G 土壤 36.969 15.584 17.996 H 土壤 36.874 15.402 18.201 I 土壤 36.747 15.314 18.245 表 7 各重金属单项系数及综合潜在生态危害指数
Table 7. Single coefficients and comprehensive potential ecological hazard indexes of heavy metals
样品号 Eri Pb Cu Zn Cd Cr RI A 5.62 4.26 1.18 82.50 0.67 94.23 B 5.17 3.99 1.17 86.25 0.75 97.33 C 5.38 3.95 1.06 71.25 0.71 82.35 D 4.11 4.16 0.88 71.25 0.71 81.11 E 3.94 3.67 0.86 82.50 0.69 91.67 F 4.16 3.20 0.84 71.25 0.67 80.13 G 3.99 3.22 0.95 67.50 0.67 76.33 H 3.69 3.30 0.80 63.75 0.68 72.21 I 3.74 3.22 0.80 56.25 0.70 64.71 均值 4.42 3.66 0.95 72.50 0.69 82.23 -
[1] KOSSOFF D, DUBBIN W E, ALFREDSSON M, et al. Mine tailings dams: characteristics, failure, environmental impacts, and remediation[J]. Applied Geochemistry, 2014, 51: 229-245. doi: 10.1016/j.apgeochem.2014.09.010
[2] BARCELOS D A, PONTES F V M, SILVA F A, et al. Gold mining tailing: Environmental availability of metals and human health risk assessment[J]. Journal of Hazardous Materials, 2020, 397: 1-8.
[3] LI Z, MA Z, VANDERKUIJP T J, YUAN Z, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014. 468: 843-853. https://www.sciencedirect.com/science/article/pii/S0048969713010176
[4] 曹雪荧, 张莎娜, 谭长银, 等. 中南大型有色金属冶炼场周边农田土壤重金属污染特征研究[J]. 土壤, 2015, 47(1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201501015.htm
CAOX Y, ZHANG S N, TAN C Y, et al. Heavy metal contamination characteristics in soils around a nonferrous metal smelter in central southern China[J]. Soil, 2015, 47(1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201501015.htm
[5] 林荩, 梁文静, 焦旸, 等. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm
LIN J, LIANG W J, JIAO Y, et al. Ecological and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm
[6] 张小敏, 张秀英, 钟太洋. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692-703. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402045.htm
ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environment Science, 2014, 35(2): 692-703. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402045.htm
[7] 张学礼, 徐乐昌, 张辉. 某铀尾矿库周围农田土壤重金属污染潜在生态风险评价[J]. 中国环境监测, 2016, 32(6): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201606012.htm
ZHANG X L, XU L C, ZHANG H. Potential ecological risk assessment of heavy metals contamination in farmland soils near an uranium tailings pond[J]. Environmental Monitoring in China, 2016, 32(6): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201606012.htm
[8] 魏浩, 薛清泼, 张国瑞, 等. 某铀尾矿库下游农田土壤重金属污染程度及其风险评价[J]. 矿产保护与利用, 2018(6): 132-139. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2d471d77-e684-4e3c-a382-e4cc6d659fc7
WEI H, XUE Q P, ZHANG G R, et al. Heavy metal pollution degree and its risk assessment of farmland soil in the downstream of a uranium tailings pond[J]. Conservation and Utilization of Mineral Resources, 2018(6): 132-139. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2d471d77-e684-4e3c-a382-e4cc6d659fc7
[9] 李俊凯, 张丹, 周培, 等. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征[J]. 环境科学, 2018, 39(8): 3845-3853. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201808047.htm
LI J K, ZHANG D, ZHOU P, et al. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing[J]. Environmental Science, 2018, 39(8): 3845-3853. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201808047.htm
[10] 方传棣, 成金华, 赵鹏大, 等. 长江经济带矿区土壤重金属污染特征与评价[J]. 地质科技情报, 2019, 38(5): 230-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905025.htm
FANG C D, CHENG J H, ZHAO P D, et al. Characteristics and evaluation of heavy metal pollution in soil of mining areas in the Yangtze River Economic Belt[J]. Geological Science and Technology Information, 2019, 38(5): 230-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905025.htm
[11] 王洋洋, 李方方, 王笑阳, 等. 铅锌冶炼厂周边农田土壤重金属污染空间分布特征及风险评估[J]. 环境科学, 2019, 40(1): 437-444. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901053.htm
WANG Y Y, LI F F, WANG X Y, et al. Spatial distribution and risk assessment of heavy metal contamination in surface farmland soil around a lead and zinc smelter[J]. Environmental Science, 2019, 40(1): 437-444. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901053.htm
[12] 薛清泼, 魏浩, 张国瑞, 等. 某铀矿周边土壤典型重金属污染特征及植物筛选[J]. 中国矿业, 2019, 28(6): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201906017.htm
XUE Q P, WEI H, ZHANG G R, et al. Pollution characteristics of typical heavy metals in soil and plant screening around a uranium mine mine[J]. China Mining Magazine, 2019, 28(6): 81- 88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201906017.htm
[13] 刘晓媛, 刘品祯, 杜启露, 等. 地质高背景区铅锌矿废弃地土壤重金属污染评价[J]. 有色金属(冶炼部分), 2019(2): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201902017.htm
LIU X Y, LIU P Z, DU Q L, et al. Evaluation of heavy metal pollution in soil of lead-zinc mine wasteland with geological high background[J]. Nonferrous Metals (Smelting Section), 2019(2): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201902017.htm
[14] 邓呈逊, 徐芳丽, 岳梅. 安徽某硫铁尾矿区农田土壤重金属污染特征[J]. 安全与环境学报, 2019, 19(1): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201901051.htm
DENG C X, XU F L, YUE M. Characteristics of heavy metal contamination in the tailings soil of a pyrite area in Anhui[J]. Journal of Safety and Environment, 2019, 19(1): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201901051.htm
[15] 高彦鑫, 冯金国, 唐磊, 等. 密云水库上游金属矿区土壤中重金属形态分布及风险评价[J]. 环境科学, 2012, 33(5): 1707-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205048.htm
GAO Y X, FENG J G, TANG L, et al. Distribution and risk assessment of heavy metals in the soil of the metal mining area in the upper reaches of Miyun Reservoir[J]. Environmental Science, 2012, 33(5): 1707-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205048.htm
[16] 赵建亮, 应光国, 魏东斌, 等. 水体和沉积物中毒害污染物的生态风险评价方法体系研究进展[J]. 生态毒理学报, 2011, 6(6): 577-588. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201106007.htm
ZHAO J L, YING G G, WEI D B, et al. Research progress on ecological risk assessment methods of toxic pollutants in water bodies and sediments[J]. Journal of Ecotoxicology, 2011, 6(6): 577-588. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201106007.htm
[17] 王成, 夏学齐, 张义, 等. 利用铅同位素方法量化不同端元源对南京土壤和长江下游悬浮物铅富集的影响[J]. 环境科学, 2014, 35(11): 4251-4256. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201411033.htm
WANG C, XIA X J, ZHANG Y, et al. Quantifying the influence of different matrices on Pb accumulation in the soil from Nanjing and suspended matter from the lower of the Yangtze River with Pb isotopic technique[J]. Environmental Sciences, 2014, 35(11): 4251-4256. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201411033.htm
[18] 肖文丹, 叶雪珠, 张棋, 等. 基于稳定同位素与多元素的土壤铅污染源解析[J]. 中国环境科学, 2021, 41(5): 2319-2328. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202105043.htm
XIAO W D, YE X Z, ZHANG Q, et al. Source apportionment of lead pollution in soil based on the stable isotope and multi element characteristics[J]. China Environmental Science, 2021, 41(5): 2319-2328. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202105043.htm
[19] 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境出版社, 2016.
Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environment Press, 2016.
[20] TESSIER A, CAMPBELL P B C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. https://pubs.acs.org/doi/10.1021/ac50043a017
[21] GHREFAT H, YUSUF N. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan[J]. Chemosphere, 2006, 65(11): 2114-2121. https://www.sciencedirect.com/science/article/pii/S0045653506008010
[22] HUANG H, YUAN X, ZENG G, et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22): 10346-10351. https://www.sciencedirect.com/science/article/pii/S0960852411012272
[23] SUNDARAY S K, NAYAK B B, LIN S, et al. Geochemical speciation and risk assessment heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1837-1846. https://www.tandfonline.com/doi/abs/10.1080/02757540.2015.1133613
[24] LIU J, ZHANG X, TRAN H, et al. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant[J]. Environmental Science and Pollution Research, 2011, 18(9) : 1623-1632. https://link.springer.com/article/10.1007/s11356-011-0523-3
[25] YU G, LIU Y, YU S, et al. Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments[J]. Chemosphere, 2011, 85(6): 1080- 1087. https://www.sciencedirect.com/science/article/pii/S0045653511008757
[26] 李如忠, 姜艳敏, 潘成荣, 等. 典型有色金属矿山城市小河流沉积物重金属形态分布及风险评估[J]. 环境科学, 2013, 34(3): 1068-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201303039.htm
LI R Z, JIANG Y M, PAN C R, et al. Fraction distribution and risk assessment of heavy metals in stream sediments from a typical nonferrous metals mining city[J]. Environmental Science, 2013, 34(3): 1068-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201303039.htm
[27] HAKANSON L. An ecological risk index for aquatic pollution control: a sediment ecological approach[J]. Water Research, 1980, 14(8): 975-1001. https://www.sciencedirect.com/science/article/pii/0043135480901438
[28] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm
XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals ' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm
[29] 苏虹程, 单保庆, 唐文忠, 等. 海河流域典型清洁水系表层沉积物中重金属总体污染水平研究[J]. 环境科学学报, 2015, 35(9): 2860-2866. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201509025.htm
SU H C, SHAN B Q, TANG W Z, et al. Heavy metal pollution of the surface sediments in a typical clean river system of Haihe Basin[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2860-2866. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201509025.htm
[30] BOURLIVA A, CHRISTOPHORIDIS C, PAPADOPOULOU L, et al. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece[J]. Environ Geochem Health, 2017, 39(3): 611-634. https://link.springer.com/article/10.1007/s10653-016-9836-y
[31] 王莎, 马俊杰, 赵丹, 等. 陕北地区土壤重金属污染特征及生态风险评价[J]. 农业资源与环境学报, 2013, 30(5): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201305012.htm
WANG S, MA J J, ZHAO D, et al. Pollution characteristics and potential ecological risk assessment of soil metals in the north area of Shaanxi Province, China[J]. Journal of Agricultural Resources and Environment, 2013, 30(5): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201305012.htm
[32] BURT R, WILSON M A, KECK T J, et al. Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA[J]. Adv Environ Res, 2003, 8(1): 51-67. https://www.sciencedirect.com/science/article/pii/S1093019102001405
[33] MARIN B, VALLADON M, POLVE M, et al. Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry[J]. Anal. Chim. Acta, 1997, 342: 91-112. https://www.sciencedirect.com/science/article/pii/S0003267096005806
[34] 何江, 王新伟, 李朝生, 等. 黄河包头段水-沉积物系统中重金属的污染特征[J]. 环境科学学报, 2003, 23(1) : 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200301010.htm
HE J, WANG X W, LI Z S, et al. Pollution character of heavy metals in the water-sediment system from Baotou section of the Yellow River. Acta Scientiae Circumstantiae., 2003, 23(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200301010.htm
[35] 张运, 许仕荣, 卢少勇. 新丰江水库表层沉积物重金属污染特征与评价[J]. 环境工程, 2018, 36(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201801028.htm
ZHANG Y, XU S R, LU S Y. Pollution characteristics and assessment of heavy etals in the surface sediment of Xinfengjiang reservoir[J]. Environmental Engineering, 2018, 36(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201801028.htm
[36] 向语兮, 王晓, 单保庆, 等. 白洋淀表层沉积物重金属形态分布特征及生态风险评价[J]. 环境科学学报, 2020, 40(6): 2237-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006034.htm
XIANG Y X, WANG X, SHAN B Q, et al. Spatial distribution, fractionation and ecological risk of heavy metals in surface sediments from Baiyangdian Lake[J]. Acta Scientiae Circumstantiae, 2020, 40(6): 2237-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006034.htm
[37] ISLAM M S, AHMED M K, RAKNUZZAMAN M, et al. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country[J]. Ecological Indicators, 2015, 48: 282-291. https://www.sciencedirect.com/science/article/pii/S1470160X14003719
[38] ANDREAS A. Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F mineralized Mole Granite (Australia)[J]. Geochimica Et Cosmochimica Acta, 2000, 64(19): 3373-3393. https://www.sciencedirect.com/science/article/pii/S0016703700004282
[39] SAFARZADEH M S, BAFGHI M S, MORADKHANI D, et al. A review on hydrometallurgical extraction and recovery of cadmium from various resources[J]. Minerals Engineering, 2007, 20(3) : 211-220. https://www.sciencedirect.com/science/article/pii/S0892687506001567
[40] ABKHOSHK E, JORJANI E, Al-HARAHSHEH M S, et al. Review of the hydrometallurgical processing of non-sulfide zinc ores[J]. Hydrometallurgy, 2014, 149: 153-167. https://www.sciencedirect.com/science/article/pii/S0304386X14001728
[41] STURGES W T, BARRIE L A. Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions[J]. Nature, 1987, 329(6135): 144-146. https://www.nature.com/articles/329144a0/
[42] MANTA D S, ANGELONE M, BELLANCA A, et al. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy[J]. Science of the Total Environment, 2002, 300(1/3): 229-243. https://www.sciencedirect.com/science/article/pii/S0048969702002735
[43] BINDLER R., BRANNVALL M, RENBERG I. Natural lead concentrations in Pristine boreal forest soils and past pollution trend: a reference for critical load models[J]. Environment and Science Technology, 1999, 33: 3362-3367. https://link.springer.com/article/10.1007/BF00282871
[44] ZHENG J, TAN M, SHIBATA Y, et al. Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline[J]. Atmospheric Environment, 2004, 38: 1191-1200. https://www.sciencedirect.com/science/article/pii/S1352231003010033
[45] 路远发, 杨红梅, 周国华, 等. 杭州市土壤铅污染的铅同位素示踪研究[J]. 第四纪研究, 2005, 25(3): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200503011.htm
LU Y F, YANG H M, ZHOU G H, et al. Lead isotope in soil as a tracer of environmental lead pollution in Hangzhou[J]. Quaternary Sciences, 2005, 25(3): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200503011.htm
[46] 陈成祥, 庄峙厦, 刘海波, 等. 不同赋存形态土壤铅同位素比值用于判别地域性差异的研究[J]. 分析化学, 2007, 35(1): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200701026.htm
CHEN C X, ZHUANG S X, LIU H B, et al. Source differentiation by lead isotope ratios in total digests of soil fractions and residual fractions[J]. Chinese Journal of Analytical Chemistry, 2007, 35(1): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200701026.htm
-