Research Progress on Comprehensive Utilization of Associated Mineral Resources in Coal-bearing Strata in China
-
摘要:
煤炭是我国的基础能源,煤系共伴生矿产资源储量大、种类多,主要包括金属矿产、非金属矿产与能源矿产。加强煤系共伴生矿产资源综合利用符合国家能源资源加工利用重大需求。阐述了煤系金属矿产(锗、镓、铝、稀土元素)、非金属矿产(硫铁矿、高岭土、膨润土、耐火黏土、硅藻土、石墨)和能源矿产(铀矿、油页岩、煤系气、天然气水合物)的赋存状况、分布特征与加工利用研究进展,分析了“双碳”背景下煤系共伴生矿产资源综合利用面临的机遇与挑战,展望了延伸煤系产业链、聚焦关键技术开发、促进煤系共伴生矿产资源分类及内涵改革、完善矿业权设置管理的发展前景,为未来煤系共伴生矿产资源综合利用提供借鉴。
Abstract:Coal is the basic energy of our country. The associated mineral resources in coal-bearing strata have many kinds and large reserves. It can be divided into metal minerals, non-metallic minerals and energy minerals. Deepening the comprehensive processing and utilization of associated mineral resources in coal-bearing strata is in line with the major needs of national energy resources processing and utilization. This paper expounded the occurrence, distribution characteristics, processing and utilization of metal (germanium, gallium, aluminum and rare earth elements), non-metallic (pyrite, kaolin, bentonite, refractory clay, diatomite, graphite) and energy minerals (uranium, oil shale, coal measure gas, natural gas hydrate) in coal-bearing strata, analyzed the opportunities and challenges faced by the comprehensive utilization of associated mineral resources in coal-bearing strata under the background of "Double-Carbon Policy" and looked forward to the development prospect of extending the coal-bearing strata industry chain, focusing on the development of key technologies, promoting the classification and connotation reform of associated mineral resources in coal-bearing strata, and improving the management scheme of mining rights. It provides a reference for the study of comprehensive utilization of coal measures associated mineral resources in the future.
-
-
[1] 中华人民共和国国务院. 中华人民共和国国民经济和社会发展第十四个五年规划和年远景目标纲要[R]. 北京: 中华人民共和国国务院, 2022.
State Council of the People's Republic of China. Outline of the 14th Five-Year Plan and Annual Goals for the National Economic and Social Development of the People's Republic of China [R]. Beijing: The State Council of the People's Republic of China, 2022.
[2] 崔艳. 我国煤系共伴生矿产资源分布与开发现状[J]. 洁净煤技术, 2018, 24(S1): 27−32.
CUI Y. Distribution and development status of coal measures associated mineral resources in China[J]. Clean Coal Technology, 2018, 24(S1): 27−32.
[3] 安庆贤, 赵婧, 戴博. 中国矿产资源的可持续效率及全要素生产率分析[J]. 系统科学与数学, 2022, 42(6): 1551−1565.
AN Q X, ZHAO J, DAI B. Analysis on sustainable efficiency and total factor productivity of mineral resources in China[J]. Systems Science and Mathematics, 2022, 42(6): 1551−1565.
[4] 李梦闪, 黄伟欣, 张臻悦, 等. 煤及其副产物中稀土元素的赋存特征与选矿富集研究进展[J]. 有色金属(选矿部分), 2021(6): 61−81.
LI M S, HUANG W X, ZHANG Z Y, et al. Occurrence characteristics and beneficiation enrichment of rare earth elements in coal and its byproducts[J]. Nonferrous Metals (Beneficiation Section), 2021(6): 61−81.
[5] 赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750−1760.
ZHAO L, WANG X B, DAI S F. Lithium minerals in coal measures: occurrence, distribution, mineralization and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750−1760.
[6] 代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
DAI S F, ZHAO L, WEI Q, et al. Key metal resources in coal measures of China: enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
[7] JIU B, HUANG W, SUN Q. Distribution Characteristics and Enrichment Model of Germanium in Coal: An Example from the Yimin Coalfield, Hailar Basin, China[J]. Natural Resources Research, 2021, 30(1): 725−740. doi: 10.1007/s11053-020-09752-x
[8] 钞晓光, 李依帆, 张云峰, 等. 煤中锗的资源分布及其提取工艺研究进展[J]. 矿产综合利用, 2020(4): 21−25.
CHAO X G, LI Y F, ZHANG Y F, et al. Research progress on resource distribution and extraction technology of germanium from coal[J]. Comprehensive Utilization of Mineral Resources, 2020(4): 21−25.
[9] NGUYEN T H, LEE M S. A review on germanium resources and its extraction by hydrometallurgical method[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(6): 406−426. doi: 10.1080/08827508.2020.1756795
[10] REZAEI H, SHAFAEI S Z, ABDOLLAHI H, et al. A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: Sodium salts roasting and organic acids leaching[J]. Fuel, 2022, 312: 122844. doi: 10.1016/j.fuel.2021.122844
[11] SHPIRT M Y, STOPANI O I, LEBEDEVA L N, et al. Germanium production technology based on the conversion of germanium-bearing lignites[J]. Solid Fuel Chemistry, 2020, 54(1): 1−10. doi: 10.3103/S0361521920010061
[12] 徐璐, 史光大, 李元坤, 等. 低品位铝土矿预富集铝镓的研究[J]. 有色金属(冶炼部分), 2018(3): 26−29.
XU L, SHI G D, LI Y K, et al. Study on preenrichment of aluminum gallium in low grade bauxite[J]. Nonferrous Metals (Smelting Part), 2018(3): 26−29.
[13] SHAO P, WANG W, CHEN L, et al. Distribution, occurrence, and enrichment of gallium in the Middle Jurassic coals of the Muli Coalfield, Qinghai, China[J]. Journal of Geochemical Exploration, 2018, 185: 116−129. doi: 10.1016/j.gexplo.2017.11.010
[14] LU F, XIAO T, LIN J, et al. Resources and extraction of gallium: A review[J]. Hydrometallurgy, 2017, 174: 105−115. doi: 10.1016/j.hydromet.2017.10.010
[15] 王涛, 张新军. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4): 21−25.
WANG T, ZHANG X J. Occurrence status and extraction methods of associated minerals in coal[J]. Comprehensive Utilization of Mineral Resources, 2019(4): 21−25.
[16] 刘汉斌, 马志斌, 郭彦霞, 等. 山西煤系锂镓铝分布特征和开发利用前景[J]. 洁净煤技术, 2019, 25(5): 39−46.
LIU H B, MA Z B, GUO Y X, et al. Distribution characteristics and development and utilization prospects of lithium, gallium and aluminum in Shanxi coal measures[J]. Clean Coal Technology, 2019, 25(5): 39−46.
[17] 张瑞, 张春明, 孙喆, 等. 煤基固废中稀土元素的分布及赋存[J]. 山东化工, 2022, 51(19): 134−138.
ZHANG R, ZHANG C M, SUN Z, et al. Distribution and occurrence of rare earth elements in coal based solid waste[J]. Shandong Chemical Industry, 2022, 51(19): 134−138.
[18] ZHANG W, NOBLE A, YANG X, et al. A comprehensive review of rare earth elements recovery from coal-related materials[J]. Minerals, 2020, 10(5): 451. doi: 10.3390/min10050451
[19] HONAKER R, GROPPO J, BHAGAVATULA A, et al. Recovery of rare earth minerals and elements from coal and coal byproducts[C]//International Conference of Coal Preparation, Louisville, Kentucky. 2016.
[20] 徐德信. 基于ICP-OES测定煤中硫铁矿硫的研究[J]. 石化技术, 2022, 29(7): 132−134. doi: 10.3969/j.issn.1006-0235.2022.07.044
XU D X. Determination of pyrite sulfur in coal based on ICP-OES[J]. Petrochemical Technology, 2022, 29(7): 132−134. doi: 10.3969/j.issn.1006-0235.2022.07.044
[21] 康文泽, 马子航. 煤系黄铁矿理化性质及浮选脱硫研究进展[J]. 洁净煤技术, 2022, 28(5): 109−117.
KANG W Z, MA Z H. Research progress on physicochemical properties and flotation desulfurization of pyrite in coal measures[J]. Clean Coal Technology, 2022, 28(5): 109−117.
[22] OLIVEIRA C M, MACHADO C M, DUARTE G W, et al. Beneficiation of pyrite from coal mining[J]. Journal of Cleaner Production, 2016, 139: 821−827. doi: 10.1016/j.jclepro.2016.08.124
[23] 唐竹胜, 唐佳, 陈惠忠, 等. 各种品位硫铁矿烧渣还原生产高品质还原铁的应用[J]. 硫酸工业, 2015(5): 24−29.
TANG Z S, TANG J, CHEN H Z, et al. Application of reduction of various grade pyrite cinder to produce high quality reduced iron[J]. Sulfuric Acid Industry, 2015(5): 24−29.
[24] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.
LI Z, XUE J, ZHU Z L, et al. Research progress of comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.
[25] CHENG S, GE K, SUN T, et al. Pozzolanic activity of mechanochemically and thermally activated coal-series kaolin in cement-based materials[J]. Construction and Building Materials, 2021, 299: 123972. doi: 10.1016/j.conbuildmat.2021.123972
[26] YUAN S, LI Y, HAN Y, et al. Effects of carbonaceous matter additives on kinetics, phase and structure evolution of coal-series kaolin during calcination[J]. Applied Clay Science, 2018, 165: 124−134. doi: 10.1016/j.clay.2018.08.003
[27] LIU L, LIU Q, ZHANG K, et al. Thermal decomposition and oxidation of pyrite with different morphologies in the coal gangue of North China[J]. Journal of Thermal Analysis and Calorimetry, 2022: 1−16.
[28] GAN C, HU H, MENG Z, et al. Characterization and hemostatic potential of two kaolins from southern China[J]. Molecules, 2019, 24(17): 3160. doi: 10.3390/molecules24173160
[29] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8): 13−17.
CHANG J W, DU G J, DU J L, et al. Current situation, problems and Suggestion of comprehensive utilization of coal gangue in our country[J]. China Environmental Protection Industry, 2022(8): 13−17.
[30] LIU Y, LEI S, LIN M, et al. Assessment of pozzolanic activity of calcined coal-series kaolin[J]. Applied Clay Science, 2017, 143: 159−167. doi: 10.1016/j.clay.2017.03.038
[31] 王栋民, 房奎圳. 煤矸石资源化利用技术[M]. 北京: 中国建材工业出版社, 2021: 31-32.
WANG D M, FANG K Z. Coal gangue resource utilization technology [M]. Beijing: China Building Materials Industry Press, 2021: 31-32.
[32] 余丽秀, 邵晨, 朱进, 等. 膨润土开发利用水平评估影响因素探讨[J]. 矿产保护与利用, 2018(6): 20−23+30.
YU L X, SHAO C, ZHU J, et al. Discussion on influencing factors of development and utilization level assessment of bentonite[J]. Conservation and Utilization of Mineral Resources, 2018(6): 20−23+30.
[33] SINGH S P, NAYAK K, PANI A. Assessment of coal ash-bentonite mixture as landfill liner[C]//Proc. Indian Geotech. Conf. 2015.
[34] 舒锋, 宋双艳. 我国膨润土开发利用现状和对策建议[J]. 中国非金属矿工业导刊, 2021(6): 24−26.
SHU F, SONG S Y. Development status and countermeasures of bentonite in China[J]. China Non-metallic Minerals Industry Guide, 2021(6): 24−26.
[35] 苗艳晖, 赵云良, 陈立才, 等. 钙基膨润土钠化工艺过程及其对矿浆黏度影响研究[J]. 硅酸盐通报, 2022, 41(10): 3525−3532.
MIAO Y H, ZHAO Y L, CHEN L C, et al. Study on sodium process of calcium bentonite and its effect on viscosity of pulp[J]. Bulletin of the Silicate, 2022, 41(10): 3525−3532.
[36] 崔家新, 王连勇, 李尧, 等. 水淬渣-粉煤灰基4A沸石的制备及性能表征[J]. 无机盐工业, 2022, 54(4): 135−140.
CUI J X, WANG L Y, LI Y, et al. Preparation and characterization of water quenched slag and fly ash based 4A zeolite[J]. Inorganic Chemicals Industry, 2022, 54(4): 135−140.
[37] 雷东升, 汪思孝. 膨润土无机凝胶制备及其在水基农药中的应用[J]. 中国非金属矿工业导刊, 2019(4): 1−2+6.
LEI D S, WANG S X. Preparation of bentonite inorganic gel and its application in water-based pesticides[J]. China Non-metallic Minerals Industry Guide, 2019(4): 1−2+6.
[38] 刘涛, 张一敏, 黄晶, 等. 钛交联蒙脱石复合材料的制备与表征[J]. 非金属矿, 2011, 34(1): 47−49. doi: 10.3969/j.issn.1000-8098.2011.01.014
LIU T, ZHANG Y M, HUANG J, et al. Preparation and characterization of Titanium crosslinked Montmorillonite composites[J]. Non-metallic Mines, 2011, 34(1): 47−49. doi: 10.3969/j.issn.1000-8098.2011.01.014
[39] 牛仁杰, 朱进, 向琦. 我国耐火粘土矿产资源分类及综合利用[J]. 中国非金属矿工业导刊, 2016(1): 43−45.
NIU R J, ZHU J, XIANG Q. Classification and comprehensive utilization of refractory clay Mineral resources in China[J]. China Non-metallic Mineral Industry Guide, 2016(1): 43−45.
[40] 秦正, 杜春彦, 王二锋, 等. 我国耐火粘土矿资源可持续利用对策研究[J]. 矿产综合利用, 2021(6): 1−6+25.
QIN Z, DU C Y, WANG E F, et al. Research on sustainable utilization of refractory clay resources[J]. Comprehensive Utilization of Mineral Resources, 2021(6): 1−6+25.
[41] 周丽, 冯琦, 李远兵, 等. 煤系高岭土在耐火材料中的应用[J]. 耐火材料, 2021, 55(3): 272−276.
ZHOU L, FENG Q, LI Y B, et al. Application of coal measure kaolin in refractories[J]. Refractories, 2021, 55(3): 272−276.
[42] 张利珍, 吕子虎, 谭秀民, 等. 我国煤系共伴生矿物资源及开发利用现状[J]. 中国矿业, 2012, 21(11): 59−61.
ZHANG L Z, LV Z H, TAN X M, et al. Development and utilization of co-associated mineral resources in coal measures in China[J]. China Mining Industry, 2012, 21(11): 59−61.
[43] 姜玉芝, 贾嵩阳. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶, 2011, 27(5): 31−37.
JIANG Y Z, JIA S Y. Development status and progress of diatomite at home and abroad[J]. Nonferrous Mining and Metallurgy, 2011, 27(5): 31−37.
[44] LUO Z M, CHENG F M, WANG T, et al. Suppressive effects of silicon dioxide and diatomite powder aerosols on coal mine gas explosions in highlands[J]. Aerosol and Air Quality Research, 2016, 16(9): 2119−2128. doi: 10.4209/aaqr.2015.11.0633
[45] 赵中华, 张健, 盛雪茹, 等. 硅藻土基固体酸催化剂的制备及催化酯化性能[J]. 功能材料, 2022, 53(1): 1169−1174.
ZHAO Z H, ZHANG J, SHENG X R, et al. Preparation and catalytic esterification of diatomite based solid acid catalyst[J]. Journal of Functional Materials, 2022, 53(1): 1169−1174.
[46] 石瑞琦. 硅藻土吸附剂对水体中重金属离子的吸附性能研究[D]. 重庆: 重庆交通大学, 2021.
SHI R Q. Study on adsorption performance of diatomite adsorbent for heavy metal ions in water [D]. Chongqing: Chongqing Jiaotong University, 2021.
[47] 王德利, 任辉, 张宇航, 等. 我国煤系石墨资源开发利用现状及对策建议探讨[J]. 中国煤炭地质, 2022, 34(6): 8−10+39.
WANG D L, REN H, ZHANG Y H, et al. The development and utilization status and countermeasures of coal measure graphite resources in our country[J]. Coal Geology in China, 2022, 34(6): 8−10+39.
[48] SHEN S, WANG J, WU Z, et al. Graphene quantum dots with high yield and high quality synthesized from low cost precursor of aphanitic graphite[J]. Nanomaterials, 2020, 10(2): 375. doi: 10.3390/nano10020375
[49] 李阔, 刘钦甫, 张帅, 等. 煤系石墨显微组分与结构特征[J]. 矿物学报, 2021, 41(1): 101−108.
LI K, LIU Q F, ZHANG S, et al. Maceral and structure characteristics of coal measure graphite[J]. Acta Mineralogica Sinica, 2021, 41(1): 101−108.
[50] ZHANG H, LI K, SUN J, et al. The structural evolution and mutation of graphite derived from coal under the influence of natural igneous plutonic intrusion[J]. Fuel, 2022, 322: 124066. doi: 10.1016/j.fuel.2022.124066
[51] 王文峰, 王文龙, 刘双双, 等. 煤中铀的赋存分布及其在利用过程中的迁移特征[J]. 煤田地质与勘探, 2021, 49(1): 65−80.
WANG W F, WANG W L, LIU S S, et al. Occurrence, distribution and migration of uranium in coal[J]. Coal Geology & Exploration, 2021, 49(1): 65−80.
[52] 刘东原, 赵永椿, 张军营, 等. 煤中铀及其在燃烧过程中的迁移行为研究进展[J]. 煤炭科学技术, 2016, 44(4): 175−181.
LIU D Y, ZHAO Y C, ZHANG J Y, et al. Research progress of uranium in coal and its migration behavior during combustion[J]. Coal Science and Technology, 2016, 44(4): 175−181.
[53] SU X, LIU Z, YAO Y, et al. Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China[J]. Ore Geology Reviews, 2020, 127: 103768. doi: 10.1016/j.oregeorev.2020.103768
[54] YANG Z, LI Y, NING Y, et al. Effects of oxidant and particle size on uranium leaching from coal ash[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(2): 801−810. doi: 10.1007/s10967-018-5963-5
[55] 傅丛, 丁华, 陈文敏. 我国油页岩与煤共生资源分布及综合利用[J]. 煤质技术, 2021, 36(3): 1−13.
FU C, DING H, CHEN W M. Distribution and comprehensive utilization of symbiotic resources of oil shale and coal in China[J]. Coal Quality Technology, 2021, 36(3): 1−13.
[56] 王宇, 龙帅. 油页岩干馏技术综述[J]. 河南化工, 2019, 36(11): 6−10.
WANG Y, LONG S. Retorting technology of oil shale[J]. Henan Chemical Industry, 2019, 36(11): 6−10.
[57] 毕彩芹, 胡志方, 汤达祯, 等. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质, 2021, 48(2): 402−423.
BI C Q, HU Z F, TANG D Z, et al. Progress in coal measure gas research and important scientific problems to be solved[J]. Geology in China, 2021, 48(2): 402−423.
[58] 黄宇. 煤层气综合利用现状及趋势研究[J]. 工程技术研究, 2020, 5(19): 248−249. doi: 10.3969/j.issn.1671-3818.2020.19.113
HUANG Y. Research on current situation and trend of comprehensive utilization of coalbed methane[J]. Engineering Technology Research, 2020, 5(19): 248−249. doi: 10.3969/j.issn.1671-3818.2020.19.113
[59] 孙雄伟, 张枫, 张宝权, 等. 煤系地层致密气薄储层地震预测方法−以鄂尔多斯盆地大宁—吉县区块为例[J]. 天然气地球科学, 2022, 33(7): 1165−1174.
SUN X W, ZHANG F, ZHANG B Q, et al. Seismic prediction method of tight gas thin reservoir in coal measure strata: A case study of Daning-Jixian block, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(7): 1165−1174.
[60] 张学庆, 李贤庆, 李阳阳, 等. 煤系页岩气储层研究进展[J]. 中国煤炭地质, 2020, 32(2): 59−66. doi: 10.3969/j.issn.1674-1803.2020.02.12
ZHANG X Q, LI X Q, LI Y Y, et al. Research progress of coal measure shale gas reservoir[J]. Coal Geology of China, 2020, 32(2): 59−66. doi: 10.3969/j.issn.1674-1803.2020.02.12
[61] LU Y Y, ZHANG H D, ZHOU Z, et al. Current status and effective suggestions for efficient exploitation of coalbed methane in China: a review[J]. Energy & Fuels, 2021, 35(11): 9102−9123.
[62] 张利媛, 邹雪净, 白宸瑞, 等. 双碳背景下天然气水合物开发的研究思路[J]. 石化技术, 2022, 29(10): 223−225+239.
ZHANG L Y, ZOU X J, BAI C R, et al. Research ideas of gas hydrate development under dual-carbon background[J]. Petrochemical Technology, 2022, 29(10): 223−225+239.
[63] ZHAO J, ZHU Z, SONG Y, et al. Analyzing the process of gas production for natural gas hydrate using depressurization[J]. Applied energy, 2015, 142: 125−134. doi: 10.1016/j.apenergy.2014.12.071
[64] WANG Y, LANG X, FAN S, et al. Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement[J]. Energy & Fuels, 2021, 35(5): 3659−3674.
[65] KE W, CHEN D. A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2049−2061. doi: 10.1016/j.cjche.2018.10.010
-