-
摘要:
锗是典型的稀散金属和战略性金属,我国的煤系含锗矿产资源具有典型的资源优势,但在锗的超常富集和提取方面依然面临诸多挑战。概述了煤中锗的分布特征、含量与赋存状态,证明阐述了煤系锗的典型浸出方法,如水冶法、微生物浸出法等从原煤直接浸出锗,以及水浸出法、无机酸浸出法、有机酸浸出法等从粉煤灰中浸出锗,以及煤系浸出液中锗的富集分离方法,包括溶剂萃取法、离子交换树脂法、支撑液膜法、离子浮选法等。此外,干馏挥锗法、碱熔—中和法、合金法、AlCl3熔炼法、锌粉还原提锗法等也能实现煤系锗的分离。最后总结分析了锗分离提取存在的问题,并展望了发展方向。
Abstract:Germanium is a typical dispersive and strategic metal. Coal related germanium mineral resources in China have typical resource advantages, however there are still many challenges in the supernormal enrichment and extraction of germanium. The distribution characteristics, content and occurrence of germanium in coal were described, and the typical leaching methods of germanium in coal measures were summarized, such as direct leaching of germanium from raw coal by water metallurgy and microbial leaching, and leaching of germanium from fly ash by water leaching, inorganic acid leaching and organic acid leaching. Furthermore, the enrichment and separation methods of germanium from coal leaching liquid were summarized, including solvent extraction, ion exchange resin, supported liquid membranes and ion flotation. In addition, germanium could be separated from coal by dry distillation and volatilization, alkali melting neutralization, alloy process, AlCl3 smelting, zinc powder reduction for germanium extraction, the existing problems of germanium separation were analyzed, and the development direction was prospected.
-
Key words:
- germanium in coal /
- germanium /
- occurrence /
- leaching /
- enrichment /
- separation
-
-
图 1 煤系锗矿床成矿模式[11]
Figure 1.
图 2 五种模型化合物氢解离能[19](C,O,H分别为灰色、红色、白色)
Figure 2.
图 3 水冶法提取煤中锗工艺流程(据文献[6]绘制)
Figure 3.
图 4 微生物浸取煤中锗的工艺原则流程(据文献[34]绘制)
Figure 4.
图 5 煤烟尘氯化浸出实验装置(根据文献[45]绘制)
Figure 5.
图 6 典型锗萃取剂评估图[35] (EGe(Ⅳ):Ge(Ⅳ)的萃取;EFe(Ⅲ):Fe(Ⅲ)的萃取;Fextractant:有机相中相对萃取剂的体积分数)
Figure 6.
图 7 萃取法从煤灰中提取锗的流程(根据文献[6]绘制)
Figure 7.
图 8 使用支撑离子液相(SILP)从富铁溶液中选择性回收锗[53]
Figure 8.
图 9 干馏流程(根据文献[65]绘制)
Figure 9.
图 10 合金法提取煤中锗的流程[27]
Figure 10.
-
[1] 代世峰, 刘池洋, 赵蕾, 等. 煤系中战略性金属矿产资源: 意义和挑战[J]. 煤炭学报, 2022, 47(5): 1743−1749.
DAI S F, LIU C Y, ZHAO L, et al. Strategic metal resources in coal-bearing strata: Significance and challenges[J]. Journal of China Coal Society, 2022, 47(5): 1743−1749.
[2] 代世峰, 任徳贻, 周义平, 等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报, 2014, 39(8): 1707−1715.
DAI S F, REN D Y, ZHOU Y P, et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Coal Society, 2014, 39(8): 1707−1715.
[3] DAI S, YAN X, WARD C R, et al. Valuable elements in Chinese coals: A review[J]. International Geology Review, 2018, 60(5/6): 590−620. doi: 10.1080/00206814.2016.1197802
[4] DAI S, REN D, CHOU C, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3−21. doi: 10.1016/j.coal.2011.02.003
[5] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111.
XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 104−111.
[6] 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.
QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resourse utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.
[7] DAI S, FINKELMAN R B. Coal as a promising source of critical elements: Progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005
[8] ROSENBERG E. Germanium: Environmental occurrence, importance and speciation[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 29−57. doi: 10.1007/s11157-008-9143-x
[9] HÖLL R, KLING M, SCHROLL E. Metallogenesis of germanium-A review[J]. Ore Geology Reviews, 2007, 30(3/4): 145−180. doi: 10.1016/j.oregeorev.2005.07.034
[10] 代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
[11] 代俊峰, 李增华, 许德如, 等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学, 2021, 45(5): 963−982.
DAI J F, LI Z H, XU D R, et al. Coal-hosted critical metal deposits: A review[J]. Geotectonica et Metallogenia, 2021, 45(5): 963−982.
[12] DAI S, WANG X, SEREDIN V V, et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications[J]. International Journal of Coal Geology, 2013, 105: 141. doi: 10.1016/j.coal.2012.10.009
[13] 王婷灏, 黄文辉, 闫德宇, 等. 中国大型煤-锗矿床成矿模式研究进展: 以云南临沧和内蒙古乌兰图嘎煤-锗矿床为例[J]. 地学前缘, 2016, 23(3): 113−123.
WANG T H, HUANG W H, YAN D Y, et al. Progress of research on mineralization mode of large coal-Ge deposits in China: Coal-Ge deposit in Wulantuga of Inner Mongolia and Lincang of Yunnan[J]. Earth Science Frontiers, 2016, 23(3): 113−123.
[14] DAI S, WANG P, WARD C R, et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology, 2015, 152: 19−46. doi: 10.1016/j.coal.2014.11.006
[15] 胡瑞忠, 苏文超, 戚华文, 等. 锗的地球化学、赋存状态和成矿作用[J]. 矿物岩石地球化学通报, 2000(4): 215−217. doi: 10.3969/j.issn.1007-2802.2000.04.002
HU R Z, SU W C, QI H W, et al. The geochemistry, occurrence and mineralization of germanium[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2000(4): 215−217. doi: 10.3969/j.issn.1007-2802.2000.04.002
[16] POKROVSKI G S, MARTIN F, HAZEMANN J-L, et al. An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution[J]. Chemical Geology, 2000, 163(1/2/3/4): 151−165. doi: 10.1016/S0009-2541(99)00102-3
[17] WEI Q, RIMMER S M. Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China[J]. International Journal of Coal Geology, 2017, 178: 39−55. doi: 10.1016/j.coal.2017.04.011
[18] ETSCHMANN B, LIU W, LI K, et al. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front U deposits[J]. Chemical Geology, 2017, 463: 29−49. doi: 10.1016/j.chemgeo.2017.05.006
[19] WEI Q, CUI C, DAI S. Organic-association of Ge in the coal-hosted ore deposits: An experimental and theoretical approach[J]. Ore Geology Reviews, 2020, 117: 103291. doi: 10.1016/j.oregeorev.2019.103291
[20] ZHUANG X, QUEROL X, ALASTUEY A, et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China[J]. International Journal of Coal Geology, 2006, 66(1/2): 119−136. doi: 10.1016/j.coal.2005.06.005
[21] 魏强. 煤型锗矿床中异常富集微量元素的亲和性研究[D]. 北京: 中国矿业大学, 2018.
WEI Q. Study on the affinity of abnormally enriched trace elements in the coal-hosted germanium ore deposits[D]. Beijing: China University of Mining and Technology, 2018.
[22] HUCULAK-MACZKA M, HOFFMANN J, HOFFMANN K. Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers[J]. Journal of Soils and Sediments, 2018, 18: 2868−2880. doi: 10.1007/s11368-017-1907-x
[23] 王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833−3841.
WANG J X, LI J, ZHAO S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3833−3841.
[24] 刘丽霞, 李文挺, 彭军, 等. 粉煤灰中锗的赋存状态研究[J]. 稀有金属与硬质合金, 2017, 45(5): 27−30.
LIU L X, LI W T, PENG J, et al. Study on occurrence state of germanium in the coal ash[J]. Rare Metals and Cemented Carbides, 2017, 45(5): 27−30.
[25] DAI S, SEREDIN V V, WARD C R, et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals[J]. International Journal of Coal Geology, 2014, 121: 79−97. doi: 10.1016/j.coal.2013.11.004
[26] 邹平, 雷霆, 张玉林, 等. 煤矸石中锗的挥发试验[J]. 金属矿山, 2006(8): 79−81. doi: 10.3321/j.issn:1001-1250.2006.08.021
ZOU P, LEI T, ZHANG Y L, et al. Experimental study on germanium volatilization from coal gangue[J]. Metal Mine, 2006(8): 79−81. doi: 10.3321/j.issn:1001-1250.2006.08.021
[27] 王玲. 褐煤中提取锗的工艺研究[D]. 唐山: 河北理工学院, 2004.
WANG L. The study about distilling Ge's technics from lignite[D]. Tangshan: Hebei Institute of Technology, 2004.
[28] 钞晓光, 李依帆, 张云峰, 等. 煤中锗的资源分布及其提取工艺研究进展[J]. 矿产综合利用, 2020(4): 21−25.
CHAO X G, LI Y F, ZHANG Y F, et al. Research progress on resource distribution and extraction technology of germanium in coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 21−25.
[29] 庄汉平, 卢家烂, 傅家谟, 等. 临沧超大型锗矿床锗赋存状态研究[J]. 中国科学(D辑:地球科学), 1998(S2): 37−42.
ZHUANG H P, LU J L, FU J M, et al. Study on occurrence state of germanium in lincang super large germanium deposit[J]. Scientia Sinica(Terrae), 1998(S2): 37−42.
[30] 朱云, 胡汉, 苏云生. 微生物从煤中浸出锗的基础热力学[J]. 云南冶金, 2002(3): 106−108.
ZHU Y, HU H, SU Y S. Basic thermodynamics on germanium recovery from lignite by microorganism[J]. Yunnan Metallurgy, 2002(3): 106−108.
[31] 罗道成. 低品位含锗褐煤中锗的微生物浸出研究[J]. 煤化工, 2007(4): 44−47.
LUO D C. Leaching germanium from low-grade lignite containing germanium with microorganism[J]. Coal Chemical Industry, 2007(4): 44−47.
[32] 邹本东, 李晓燕, 陈圆圆, 等. 褐煤中锗的连续化学提取及形态分布研究[J]. 中国检验检测, 2017, 25(1): 20−22.
ZOU B D, LI X Y, CHEN Y Y, et al. Study on continuous chemical extraction and speciation distribution of germanium from lignite[J]. China Inspection Body and Laboratory, 2017, 25(1): 20−22.
[33] 徐冬, 陈毅伟, 郭桦, 等. 煤中锗的资源分布及煤伴锗提取工艺的研究进展[J]. 煤化工, 2013, 41(4): 53−57. doi: 10.3969/j.issn.1005-9598.2013.04.016
XU D, CHEN Y W, GUO H, et al. Resource distribution of germanium in coal and study progress on the germanium recovery from coal[J]. Coal Chemical Industry, 2013, 41(4): 53−57. doi: 10.3969/j.issn.1005-9598.2013.04.016
[34] 朱云, 胡汉, 郭淑仙. 微生物浸出煤中锗的工艺[J]. 稀有金属, 2003(2): 310−313.
ZHU Y, HU H, GUO S X. Techology of leaching germanium from lignite by means of microorganism aided[J]. Chinese Journal of Rare Metals, 2003(2): 310−313.
[35] JIANG T, ZHANG T, LIU Z. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction[J]. Journal of Cleaner Production, 2021, 294: 126217. doi: 10.1016/j.jclepro.2021.126217
[36] ROBERTZ B, VERHELLE J, SCHURMANS M. The Primary and secondary production of germanium: A life-cycle assessment of different process alternatives[J]. JOM, 2015, 67: 412−424. doi: 10.1007/s11837-014-1267-6
[37] ZHANG L, XU Z. One-pot synthesis of Ge as ultrafine particles from coal fly ash by vacuum dynamic flash reduction and inert gas condensation.[J]. Scientific Reports, 2017, 7: 3461. doi: 10.1038/s41598-017-03561-8
[38] ARROYO F, FONT O, CHIMENOS J M, et al. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application[J]. Fuel Processing Technology, 2014, 124: 222−227. doi: 10.1016/j.fuproc.2014.03.004
[39] CHIMENOS J M, FERNANDEZ A I, DEL VALLE-ZERMENO R, et al. Arsenic and antimony removal by oxidative aqueous leaching of IGCC fly ash during germanium extraction[J]. Fuel, 2013, 112: 450−458. doi: 10.1016/j.fuel.2013.05.059
[40] XU D, CHEN Y W, GUO H, et al. Review of germanium recovery technologies from coal[J]. Applied Mechanics and Materials, 2013, 2746: 423−426.
[41] ZHANG L, XU Z. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash[J]. Journal of Hazardous Materials, 2017, 321: 18−27. doi: 10.1016/j.jhazmat.2016.08.070
[42] 曹洪杨, 陈冬冬, 饶帅, 等. 低品位含锗褐煤烟尘二次富集提锗工艺研究[J]. 有色金属(冶炼部分), 2019(12): 29−32.
CAO H Y, CHEN D D, RAO S, et al. Study on secondary enrichment and extraction of germanium from low grade germanium-bearing dust of cyclone furnace[J]. Nonferrous Metals(Extractive Metallurgy), 2019(12): 29−32.
[43] 普世坤. 热还原—真空挥发富集提取锗研究[D]. 上海: 上海大学, 2016.
PU S K. Extraction of germanium by thermal reduction vacuum evaporation[D]. Shanghai: Shanghai University, 2016.
[44] ARNORSSON S. Germanium in Icelandic geothermal systems[J]. Geochimica ET Cosmochimica Acta, 1984, 48(12): 2489−2502. doi: 10.1016/0016-7037(84)90300-4
[45] 刘福财, 袁琴, 王铁艳. 煤烟尘制取四氯化锗的研究[J]. 稀有金属, 2011, 35(4): 623−626. doi: 10.3969/j.issn.0258-7076.2011.04.025
LIU F C, YUAN Q, WANG T Y. Preparation of germanium tetrachloride with soot[J]. Chinese Journal of Rare Metals, 2011, 35(4): 623−626. doi: 10.3969/j.issn.0258-7076.2011.04.025
[46] TORRALVO F A, FERNANDEZ-PEREIRA C, VILLARD E G, et al. Low environmental impact process for germanium recovery from an industrial residue[J]. Minerals Engineering, 2018, 128: 106−114. doi: 10.1016/j.mineng.2018.07.022
[47] 时文中, 朱国才. 氯化铵氯化—二酰异羟肟酸萃取法从粉煤灰中提取锗的研究[J]. 河南大学学报(自然科学版), 2007(2): 147−151.
SHI W Z, ZHU G C. Study on extracting germanium from coal ash by chlorination with ammonium chloride and extraction with dihydroxamic acid as extractant[J]. Journal of Henan University(Natural Science), 2007(2): 147−151.
[48] SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review on metal-organic frameworks: Synthesis and applications[J]. Trends in Analytical Chemistry, 2019, 118: 401−425. doi: 10.1016/j.trac.2019.06.007
[49] SARMA G K, SEN GUPTA S, BHATTACHARYYA K G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review[J]. Environmental Science and Pollution Research International, 2019, 26: 6245−6278. doi: 10.1007/s11356-018-04093-y
[50] LIU B, JIN N. The applications of ionic liquid as functional material: A review[J]. Current Organic Chemistry, 2016, 20: 2109−2116. doi: 10.2174/1385272820666160527101844
[51] CHEN L, WU Y, DONG H, et al. An overview on membrane strategies for rare earths extraction and separation[J]. Separation and Purification Technology, 2018, 197: 70−85. doi: 10.1016/j.seppur.2017.12.053
[52] HAGHIGHI H K, IRANNAJAD M, FORTUNY A, et al. Non-dispersive selective extraction of germanium from fly ash leachates using membrane-based processes[J]. Separation Science and Technology, 2019, 54: 2879−2894. doi: 10.1080/01496395.2018.1555170
[53] VAN ROOSENDAEL S, ROOSEN J, BANERJEE D, et al. Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP)[J]. Separation and Purification Technology, 2019, 221: 83−92. doi: 10.1016/j.seppur.2019.03.068
[54] CHANG L, CAO Y, FAN G, et al. A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 2019, 9: 20226−20239. doi: 10.1039/C9RA02905B
[55] PATEL M, KARAMALIDIS A K. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies[J]. Separation and Purification Technology, 2021, 275: 118981. doi: 10.1016/j.seppur.2021.118981
[56] MATIS K A, STALIDIS G A, ZOUMBOULIS A I. Flotation of germanium from dilute solutions[J]. Separation Science and Technology, 1988, 23: 347−362. doi: 10.1080/01496398808060709
[57] HERNÁNDEZ-EXPÓSITO A, CHIMENOS J M, FERNÁNDEZ A I, et al. Ion flotation of germanium from fly ash aqueous leachates[J]. Chemical Engineering Journal, 2006, 118: 69−75. doi: 10.1016/j.cej.2006.01.012
[58] BAYAT S, AGHAZADEH S, NOAPARAST M, et al. Germanium separation and purification by leaching and precipitation[J]. Journal of Central South University, 2016, 23: 2214−2222. doi: 10.1007/s11771-016-3279-6
[59] NGUYEN T H, LEE M S. A review on germanium resources and its extraction by hydrometallurgical method[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42: 406−426.
[60] LIANG D, WANG J, WANG Y, et al. Behavior of tannins in germanium recovery by tannin process[J]. Hydrometallurgy, 2008, 93: 140−142. doi: 10.1016/j.hydromet.2008.03.006
[61] 杨芳芳. 含锗浸出液单宁沉淀法提取锗的超声强化技术研究[D]. 昆明: 昆明理工大学, 2021.
YANG F F. Study on ultrasonic intensification of germanium extraction by tannin precipitation from germanium containing leaching solution[D]. Kunming: Kunming University of Science and Technology, 2021.
[62] 王斌. 锗铁渣在含锗烟尘中性浸出时富集锗的研究[J]. 有色金属(冶炼部分), 2002(4): 37−39.
WANG B. Study on germanium enrichment on neuter leaching Ge-containing dust by adding Ge-Fe slag[J]. Nonferrous Metals(Extractive Metallurgy), 2002(4): 37−39.
[63] 张家敏, 雷霆, 张玉林, 等. 从含锗褐煤中干馏提锗和制取焦炭的试验研究[J]. 稀有金属, 2007(3): 371−376.
ZHANG J M, LEI T, ZHANG Y L, et al. Distilling of germanium and preparation of coke from lignite containing germanium[J]. Chinese Journal of Rare Metals, 2007(3): 371−376.
[64] 唐建文, 黄伟兵, 羡鹏飞, 等. 含锗煤烟灰高温还原挥发试验研究[J]. 有色冶金节能, 2020, 36(6): 30−33.
TANG J W, HUANG W B, XIAN P F, et al. Experimental study on the reductive volatilization of germanium from lignite soot at high temperature[J]. Energy Saving of Nonferrous Metallurgy, 2020, 36(6): 30−33.
[65] 冯林永, 雷霆, 张家敏, 等. 含锗褐煤综合利用新工艺研究[J]. 有色金属(冶炼部分), 2008(5): 35−37.
FENG L Y, LEI T, ZHANG J M, et al. A new utilization process for germanium-bearing lignite coal[J]. Nonferrous Metals(Extractive Metallurgy), 2008(5): 35−37.
[66] 荣令坤, 崔保禄, 曹钊, 等. 富锗褐煤干馏过程中锗的配分行为研究[J]. 矿产保护与利用, 2022, 42(3): 8−14.
RONG L K, CUI B L, CAO Z, et al. Study on the partition behaviors of germanium during the carbonization of germanium-rich lignite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 8−14.
[67] 张家敏, 雷霆, 张玉林, 等. 用干馏方法提取褐煤中锗并制备焦炭的研究[J]. 煤炭科学技术, 2006(12): 69−72.
ZHANG J M, LEI T, ZHANG Y L, et al. Research on dry distilling method applied to germanium(Ge) from lignite and to prepare coke[J]. Coal Science and Technology, 2006(12): 69−72.
[68] 李国娟, 曹洪杨. 褐煤中伴生低品位锗资源化利用研究进展[J]. 矿产综合利用, 2021(2): 52−57. doi: 10.3969/j.issn.1000-6532.2021.02.011
LI G J, CAO H Y. Resource utilization of associated low-grade germanium in lignite[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 52−57. doi: 10.3969/j.issn.1000-6532.2021.02.011
[69] 许凯. 链条炉炉膛结构对热锗联产锗富集条件影响的CFD模拟[D]. 天津: 天津大学, 2008.
XU K. CFD simulation on enrichment of germanium of chain boiler structure[D]. Tianjin: Tianjin University, 2008.
[70] 张小东, 赵飞燕, 郭昭华, 等. 煤中稀有金属锗的提取技术研究进展[J]. 无机盐工业, 2018, 50(2): 16-19.
ZHANG X D, ZHAO F Y, GUO Z H, et al. Research progress in extraction technology of rare metal germanium in coal[J], Inorganic Chemicals Industry, 2018, 50(2): 16-19.
-