煤系锗的赋存与分离研究进展

张致远, 滕道光, 曹亦俊, 李鹏. 煤系锗的赋存与分离研究进展[J]. 矿产保护与利用, 2022, 42(6): 10-20. doi: 10.13779/j.cnki.issn1001-0076.2022.06.002
引用本文: 张致远, 滕道光, 曹亦俊, 李鹏. 煤系锗的赋存与分离研究进展[J]. 矿产保护与利用, 2022, 42(6): 10-20. doi: 10.13779/j.cnki.issn1001-0076.2022.06.002
ZHANG Zhiyuan, TENG Daoguang, CAO Yijun, LI Peng. Research Progress on the Occurrence and Separation of Germanium from Coal[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 10-20. doi: 10.13779/j.cnki.issn1001-0076.2022.06.002
Citation: ZHANG Zhiyuan, TENG Daoguang, CAO Yijun, LI Peng. Research Progress on the Occurrence and Separation of Germanium from Coal[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 10-20. doi: 10.13779/j.cnki.issn1001-0076.2022.06.002

煤系锗的赋存与分离研究进展

  • 基金项目: 国家重点研发计划项目(2021YFC2902604)
详细信息
    作者简介: 张致远(1999—),男,河南安阳人,在读博士,主要从事煤系关键金属的富集与分离研究。E-mail:1452357065@qq.com
    通讯作者: 李鹏(1987—),男,安徽淮北人,副教授,博士,主要研究煤基固体碳资源的分离与材料化利用、褐煤解聚及煤基复合炭材料、煤系关键金属的富集与分离。E-mail:zdhglipeng@zzu.edu.cn
  • 中图分类号: TD849

Research Progress on the Occurrence and Separation of Germanium from Coal

More Information
  • 锗是典型的稀散金属和战略性金属,我国的煤系含锗矿产资源具有典型的资源优势,但在锗的超常富集和提取方面依然面临诸多挑战。概述了煤中锗的分布特征、含量与赋存状态,证明阐述了煤系锗的典型浸出方法,如水冶法、微生物浸出法等从原煤直接浸出锗,以及水浸出法、无机酸浸出法、有机酸浸出法等从粉煤灰中浸出锗,以及煤系浸出液中锗的富集分离方法,包括溶剂萃取法、离子交换树脂法、支撑液膜法、离子浮选法等。此外,干馏挥锗法、碱熔—中和法、合金法、AlCl3熔炼法、锌粉还原提锗法等也能实现煤系锗的分离。最后总结分析了锗分离提取存在的问题,并展望了发展方向。

  • 加载中
  • 图 1  煤系锗矿床成矿模式[11]

    Figure 1. 

    图 2  五种模型化合物氢解离能[19](C,O,H分别为灰色、红色、白色)

    Figure 2. 

    图 3  水冶法提取煤中锗工艺流程(据文献[6]绘制)

    Figure 3. 

    图 4  微生物浸取煤中锗的工艺原则流程(据文献[34]绘制)

    Figure 4. 

    图 5  煤烟尘氯化浸出实验装置(根据文献[45]绘制)

    Figure 5. 

    图 6  典型锗萃取剂评估图[35]EGe(Ⅳ):Ge(Ⅳ)的萃取;EFe(Ⅲ):Fe(Ⅲ)的萃取;Fextractant:有机相中相对萃取剂的体积分数)

    Figure 6. 

    图 7  萃取法从煤灰中提取锗的流程(根据文献[6]绘制)

    Figure 7. 

    图 8  使用支撑离子液相(SILP)从富铁溶液中选择性回收锗[53]

    Figure 8. 

    图 9  干馏流程(根据文献[65]绘制)

    Figure 9. 

    图 10  合金法提取煤中锗的流程[27]

    Figure 10. 

  • [1]

    代世峰, 刘池洋, 赵蕾, 等. 煤系中战略性金属矿产资源: 意义和挑战[J]. 煤炭学报, 2022, 47(5): 1743−1749.

    DAI S F, LIU C Y, ZHAO L, et al. Strategic metal resources in coal-bearing strata: Significance and challenges[J]. Journal of China Coal Society, 2022, 47(5): 1743−1749.

    [2]

    代世峰, 任徳贻, 周义平, 等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报, 2014, 39(8): 1707−1715.

    DAI S F, REN D Y, ZHOU Y P, et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Coal Society, 2014, 39(8): 1707−1715.

    [3]

    DAI S, YAN X, WARD C R, et al. Valuable elements in Chinese coals: A review[J]. International Geology Review, 2018, 60(5/6): 590−620. doi: 10.1080/00206814.2016.1197802

    [4]

    DAI S, REN D, CHOU C, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3−21. doi: 10.1016/j.coal.2011.02.003

    [5]

    徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111.

    XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 104−111.

    [6]

    秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.

    QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resourse utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.

    [7]

    DAI S, FINKELMAN R B. Coal as a promising source of critical elements: Progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005

    [8]

    ROSENBERG E. Germanium: Environmental occurrence, importance and speciation[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 29−57. doi: 10.1007/s11157-008-9143-x

    [9]

    HÖLL R, KLING M, SCHROLL E. Metallogenesis of germanium-A review[J]. Ore Geology Reviews, 2007, 30(3/4): 145−180. doi: 10.1016/j.oregeorev.2005.07.034

    [10]

    代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    [11]

    代俊峰, 李增华, 许德如, 等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学, 2021, 45(5): 963−982.

    DAI J F, LI Z H, XU D R, et al. Coal-hosted critical metal deposits: A review[J]. Geotectonica et Metallogenia, 2021, 45(5): 963−982.

    [12]

    DAI S, WANG X, SEREDIN V V, et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications[J]. International Journal of Coal Geology, 2013, 105: 141. doi: 10.1016/j.coal.2012.10.009

    [13]

    王婷灏, 黄文辉, 闫德宇, 等. 中国大型煤-锗矿床成矿模式研究进展: 以云南临沧和内蒙古乌兰图嘎煤-锗矿床为例[J]. 地学前缘, 2016, 23(3): 113−123.

    WANG T H, HUANG W H, YAN D Y, et al. Progress of research on mineralization mode of large coal-Ge deposits in China: Coal-Ge deposit in Wulantuga of Inner Mongolia and Lincang of Yunnan[J]. Earth Science Frontiers, 2016, 23(3): 113−123.

    [14]

    DAI S, WANG P, WARD C R, et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology, 2015, 152: 19−46. doi: 10.1016/j.coal.2014.11.006

    [15]

    胡瑞忠, 苏文超, 戚华文, 等. 锗的地球化学、赋存状态和成矿作用[J]. 矿物岩石地球化学通报, 2000(4): 215−217. doi: 10.3969/j.issn.1007-2802.2000.04.002

    HU R Z, SU W C, QI H W, et al. The geochemistry, occurrence and mineralization of germanium[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2000(4): 215−217. doi: 10.3969/j.issn.1007-2802.2000.04.002

    [16]

    POKROVSKI G S, MARTIN F, HAZEMANN J-L, et al. An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution[J]. Chemical Geology, 2000, 163(1/2/3/4): 151−165. doi: 10.1016/S0009-2541(99)00102-3

    [17]

    WEI Q, RIMMER S M. Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China[J]. International Journal of Coal Geology, 2017, 178: 39−55. doi: 10.1016/j.coal.2017.04.011

    [18]

    ETSCHMANN B, LIU W, LI K, et al. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front U deposits[J]. Chemical Geology, 2017, 463: 29−49. doi: 10.1016/j.chemgeo.2017.05.006

    [19]

    WEI Q, CUI C, DAI S. Organic-association of Ge in the coal-hosted ore deposits: An experimental and theoretical approach[J]. Ore Geology Reviews, 2020, 117: 103291. doi: 10.1016/j.oregeorev.2019.103291

    [20]

    ZHUANG X, QUEROL X, ALASTUEY A, et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China[J]. International Journal of Coal Geology, 2006, 66(1/2): 119−136. doi: 10.1016/j.coal.2005.06.005

    [21]

    魏强. 煤型锗矿床中异常富集微量元素的亲和性研究[D]. 北京: 中国矿业大学, 2018.

    WEI Q. Study on the affinity of abnormally enriched trace elements in the coal-hosted germanium ore deposits[D]. Beijing: China University of Mining and Technology, 2018.

    [22]

    HUCULAK-MACZKA M, HOFFMANN J, HOFFMANN K. Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers[J]. Journal of Soils and Sediments, 2018, 18: 2868−2880. doi: 10.1007/s11368-017-1907-x

    [23]

    王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833−3841.

    WANG J X, LI J, ZHAO S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3833−3841.

    [24]

    刘丽霞, 李文挺, 彭军, 等. 粉煤灰中锗的赋存状态研究[J]. 稀有金属与硬质合金, 2017, 45(5): 27−30.

    LIU L X, LI W T, PENG J, et al. Study on occurrence state of germanium in the coal ash[J]. Rare Metals and Cemented Carbides, 2017, 45(5): 27−30.

    [25]

    DAI S, SEREDIN V V, WARD C R, et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals[J]. International Journal of Coal Geology, 2014, 121: 79−97. doi: 10.1016/j.coal.2013.11.004

    [26]

    邹平, 雷霆, 张玉林, 等. 煤矸石中锗的挥发试验[J]. 金属矿山, 2006(8): 79−81. doi: 10.3321/j.issn:1001-1250.2006.08.021

    ZOU P, LEI T, ZHANG Y L, et al. Experimental study on germanium volatilization from coal gangue[J]. Metal Mine, 2006(8): 79−81. doi: 10.3321/j.issn:1001-1250.2006.08.021

    [27]

    王玲. 褐煤中提取锗的工艺研究[D]. 唐山: 河北理工学院, 2004.

    WANG L. The study about distilling Ge's technics from lignite[D]. Tangshan: Hebei Institute of Technology, 2004.

    [28]

    钞晓光, 李依帆, 张云峰, 等. 煤中锗的资源分布及其提取工艺研究进展[J]. 矿产综合利用, 2020(4): 21−25.

    CHAO X G, LI Y F, ZHANG Y F, et al. Research progress on resource distribution and extraction technology of germanium in coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 21−25.

    [29]

    庄汉平, 卢家烂, 傅家谟, 等. 临沧超大型锗矿床锗赋存状态研究[J]. 中国科学(D辑:地球科学), 1998(S2): 37−42.

    ZHUANG H P, LU J L, FU J M, et al. Study on occurrence state of germanium in lincang super large germanium deposit[J]. Scientia Sinica(Terrae), 1998(S2): 37−42.

    [30]

    朱云, 胡汉, 苏云生. 微生物从煤中浸出锗的基础热力学[J]. 云南冶金, 2002(3): 106−108.

    ZHU Y, HU H, SU Y S. Basic thermodynamics on germanium recovery from lignite by microorganism[J]. Yunnan Metallurgy, 2002(3): 106−108.

    [31]

    罗道成. 低品位含锗褐煤中锗的微生物浸出研究[J]. 煤化工, 2007(4): 44−47.

    LUO D C. Leaching germanium from low-grade lignite containing germanium with microorganism[J]. Coal Chemical Industry, 2007(4): 44−47.

    [32]

    邹本东, 李晓燕, 陈圆圆, 等. 褐煤中锗的连续化学提取及形态分布研究[J]. 中国检验检测, 2017, 25(1): 20−22.

    ZOU B D, LI X Y, CHEN Y Y, et al. Study on continuous chemical extraction and speciation distribution of germanium from lignite[J]. China Inspection Body and Laboratory, 2017, 25(1): 20−22.

    [33]

    徐冬, 陈毅伟, 郭桦, 等. 煤中锗的资源分布及煤伴锗提取工艺的研究进展[J]. 煤化工, 2013, 41(4): 53−57. doi: 10.3969/j.issn.1005-9598.2013.04.016

    XU D, CHEN Y W, GUO H, et al. Resource distribution of germanium in coal and study progress on the germanium recovery from coal[J]. Coal Chemical Industry, 2013, 41(4): 53−57. doi: 10.3969/j.issn.1005-9598.2013.04.016

    [34]

    朱云, 胡汉, 郭淑仙. 微生物浸出煤中锗的工艺[J]. 稀有金属, 2003(2): 310−313.

    ZHU Y, HU H, GUO S X. Techology of leaching germanium from lignite by means of microorganism aided[J]. Chinese Journal of Rare Metals, 2003(2): 310−313.

    [35]

    JIANG T, ZHANG T, LIU Z. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction[J]. Journal of Cleaner Production, 2021, 294: 126217. doi: 10.1016/j.jclepro.2021.126217

    [36]

    ROBERTZ B, VERHELLE J, SCHURMANS M. The Primary and secondary production of germanium: A life-cycle assessment of different process alternatives[J]. JOM, 2015, 67: 412−424. doi: 10.1007/s11837-014-1267-6

    [37]

    ZHANG L, XU Z. One-pot synthesis of Ge as ultrafine particles from coal fly ash by vacuum dynamic flash reduction and inert gas condensation.[J]. Scientific Reports, 2017, 7: 3461. doi: 10.1038/s41598-017-03561-8

    [38]

    ARROYO F, FONT O, CHIMENOS J M, et al. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application[J]. Fuel Processing Technology, 2014, 124: 222−227. doi: 10.1016/j.fuproc.2014.03.004

    [39]

    CHIMENOS J M, FERNANDEZ A I, DEL VALLE-ZERMENO R, et al. Arsenic and antimony removal by oxidative aqueous leaching of IGCC fly ash during germanium extraction[J]. Fuel, 2013, 112: 450−458. doi: 10.1016/j.fuel.2013.05.059

    [40]

    XU D, CHEN Y W, GUO H, et al. Review of germanium recovery technologies from coal[J]. Applied Mechanics and Materials, 2013, 2746: 423−426.

    [41]

    ZHANG L, XU Z. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash[J]. Journal of Hazardous Materials, 2017, 321: 18−27. doi: 10.1016/j.jhazmat.2016.08.070

    [42]

    曹洪杨, 陈冬冬, 饶帅, 等. 低品位含锗褐煤烟尘二次富集提锗工艺研究[J]. 有色金属(冶炼部分), 2019(12): 29−32.

    CAO H Y, CHEN D D, RAO S, et al. Study on secondary enrichment and extraction of germanium from low grade germanium-bearing dust of cyclone furnace[J]. Nonferrous Metals(Extractive Metallurgy), 2019(12): 29−32.

    [43]

    普世坤. 热还原—真空挥发富集提取锗研究[D]. 上海: 上海大学, 2016.

    PU S K. Extraction of germanium by thermal reduction vacuum evaporation[D]. Shanghai: Shanghai University, 2016.

    [44]

    ARNORSSON S. Germanium in Icelandic geothermal systems[J]. Geochimica ET Cosmochimica Acta, 1984, 48(12): 2489−2502. doi: 10.1016/0016-7037(84)90300-4

    [45]

    刘福财, 袁琴, 王铁艳. 煤烟尘制取四氯化锗的研究[J]. 稀有金属, 2011, 35(4): 623−626. doi: 10.3969/j.issn.0258-7076.2011.04.025

    LIU F C, YUAN Q, WANG T Y. Preparation of germanium tetrachloride with soot[J]. Chinese Journal of Rare Metals, 2011, 35(4): 623−626. doi: 10.3969/j.issn.0258-7076.2011.04.025

    [46]

    TORRALVO F A, FERNANDEZ-PEREIRA C, VILLARD E G, et al. Low environmental impact process for germanium recovery from an industrial residue[J]. Minerals Engineering, 2018, 128: 106−114. doi: 10.1016/j.mineng.2018.07.022

    [47]

    时文中, 朱国才. 氯化铵氯化—二酰异羟肟酸萃取法从粉煤灰中提取锗的研究[J]. 河南大学学报(自然科学版), 2007(2): 147−151.

    SHI W Z, ZHU G C. Study on extracting germanium from coal ash by chlorination with ammonium chloride and extraction with dihydroxamic acid as extractant[J]. Journal of Henan University(Natural Science), 2007(2): 147−151.

    [48]

    SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review on metal-organic frameworks: Synthesis and applications[J]. Trends in Analytical Chemistry, 2019, 118: 401−425. doi: 10.1016/j.trac.2019.06.007

    [49]

    SARMA G K, SEN GUPTA S, BHATTACHARYYA K G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review[J]. Environmental Science and Pollution Research International, 2019, 26: 6245−6278. doi: 10.1007/s11356-018-04093-y

    [50]

    LIU B, JIN N. The applications of ionic liquid as functional material: A review[J]. Current Organic Chemistry, 2016, 20: 2109−2116. doi: 10.2174/1385272820666160527101844

    [51]

    CHEN L, WU Y, DONG H, et al. An overview on membrane strategies for rare earths extraction and separation[J]. Separation and Purification Technology, 2018, 197: 70−85. doi: 10.1016/j.seppur.2017.12.053

    [52]

    HAGHIGHI H K, IRANNAJAD M, FORTUNY A, et al. Non-dispersive selective extraction of germanium from fly ash leachates using membrane-based processes[J]. Separation Science and Technology, 2019, 54: 2879−2894. doi: 10.1080/01496395.2018.1555170

    [53]

    VAN ROOSENDAEL S, ROOSEN J, BANERJEE D, et al. Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP)[J]. Separation and Purification Technology, 2019, 221: 83−92. doi: 10.1016/j.seppur.2019.03.068

    [54]

    CHANG L, CAO Y, FAN G, et al. A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 2019, 9: 20226−20239. doi: 10.1039/C9RA02905B

    [55]

    PATEL M, KARAMALIDIS A K. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies[J]. Separation and Purification Technology, 2021, 275: 118981. doi: 10.1016/j.seppur.2021.118981

    [56]

    MATIS K A, STALIDIS G A, ZOUMBOULIS A I. Flotation of germanium from dilute solutions[J]. Separation Science and Technology, 1988, 23: 347−362. doi: 10.1080/01496398808060709

    [57]

    HERNÁNDEZ-EXPÓSITO A, CHIMENOS J M, FERNÁNDEZ A I, et al. Ion flotation of germanium from fly ash aqueous leachates[J]. Chemical Engineering Journal, 2006, 118: 69−75. doi: 10.1016/j.cej.2006.01.012

    [58]

    BAYAT S, AGHAZADEH S, NOAPARAST M, et al. Germanium separation and purification by leaching and precipitation[J]. Journal of Central South University, 2016, 23: 2214−2222. doi: 10.1007/s11771-016-3279-6

    [59]

    NGUYEN T H, LEE M S. A review on germanium resources and its extraction by hydrometallurgical method[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42: 406−426.

    [60]

    LIANG D, WANG J, WANG Y, et al. Behavior of tannins in germanium recovery by tannin process[J]. Hydrometallurgy, 2008, 93: 140−142. doi: 10.1016/j.hydromet.2008.03.006

    [61]

    杨芳芳. 含锗浸出液单宁沉淀法提取锗的超声强化技术研究[D]. 昆明: 昆明理工大学, 2021.

    YANG F F. Study on ultrasonic intensification of germanium extraction by tannin precipitation from germanium containing leaching solution[D]. Kunming: Kunming University of Science and Technology, 2021.

    [62]

    王斌. 锗铁渣在含锗烟尘中性浸出时富集锗的研究[J]. 有色金属(冶炼部分), 2002(4): 37−39.

    WANG B. Study on germanium enrichment on neuter leaching Ge-containing dust by adding Ge-Fe slag[J]. Nonferrous Metals(Extractive Metallurgy), 2002(4): 37−39.

    [63]

    张家敏, 雷霆, 张玉林, 等. 从含锗褐煤中干馏提锗和制取焦炭的试验研究[J]. 稀有金属, 2007(3): 371−376.

    ZHANG J M, LEI T, ZHANG Y L, et al. Distilling of germanium and preparation of coke from lignite containing germanium[J]. Chinese Journal of Rare Metals, 2007(3): 371−376.

    [64]

    唐建文, 黄伟兵, 羡鹏飞, 等. 含锗煤烟灰高温还原挥发试验研究[J]. 有色冶金节能, 2020, 36(6): 30−33.

    TANG J W, HUANG W B, XIAN P F, et al. Experimental study on the reductive volatilization of germanium from lignite soot at high temperature[J]. Energy Saving of Nonferrous Metallurgy, 2020, 36(6): 30−33.

    [65]

    冯林永, 雷霆, 张家敏, 等. 含锗褐煤综合利用新工艺研究[J]. 有色金属(冶炼部分), 2008(5): 35−37.

    FENG L Y, LEI T, ZHANG J M, et al. A new utilization process for germanium-bearing lignite coal[J]. Nonferrous Metals(Extractive Metallurgy), 2008(5): 35−37.

    [66]

    荣令坤, 崔保禄, 曹钊, 等. 富锗褐煤干馏过程中锗的配分行为研究[J]. 矿产保护与利用, 2022, 42(3): 8−14.

    RONG L K, CUI B L, CAO Z, et al. Study on the partition behaviors of germanium during the carbonization of germanium-rich lignite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 8−14.

    [67]

    张家敏, 雷霆, 张玉林, 等. 用干馏方法提取褐煤中锗并制备焦炭的研究[J]. 煤炭科学技术, 2006(12): 69−72.

    ZHANG J M, LEI T, ZHANG Y L, et al. Research on dry distilling method applied to germanium(Ge) from lignite and to prepare coke[J]. Coal Science and Technology, 2006(12): 69−72.

    [68]

    李国娟, 曹洪杨. 褐煤中伴生低品位锗资源化利用研究进展[J]. 矿产综合利用, 2021(2): 52−57. doi: 10.3969/j.issn.1000-6532.2021.02.011

    LI G J, CAO H Y. Resource utilization of associated low-grade germanium in lignite[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 52−57. doi: 10.3969/j.issn.1000-6532.2021.02.011

    [69]

    许凯. 链条炉炉膛结构对热锗联产锗富集条件影响的CFD模拟[D]. 天津: 天津大学, 2008.

    XU K. CFD simulation on enrichment of germanium of chain boiler structure[D]. Tianjin: Tianjin University, 2008.

    [70]

    张小东, 赵飞燕, 郭昭华, 等. 煤中稀有金属锗的提取技术研究进展[J]. 无机盐工业, 2018, 50(2): 16-19.

    ZHANG X D, ZHAO F Y, GUO Z H, et al. Research progress in extraction technology of rare metal germanium in coal[J], Inorganic Chemicals Industry, 2018, 50(2): 16-19.

  • 加载中

(10)

计量
  • 文章访问数:  186
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2022-11-15
刊出日期:  2022-12-26

目录