Research Progress on Characteristics and Comprehensive Utilization of Bauxite Resource in China
-
摘要:
铝土矿是我国战略性矿产之一,是国家经济建设的重要物质基础,在保障产业链供应链安全稳定中具有重要作用。概述了我国铝土矿资源储量、分布、类型以及资源特点;对比了我国铝土矿主要矿区的矿石物质组成与矿石特征;介绍了铝土矿在不同行业的应用情况及品质要求,详细阐述了铝土矿选矿技术现状,以及共伴生组分及元素、尾矿、赤泥和耐火材料废料的综合利用技术,最后分析了铝土矿在开发利用过程存在的主要问题,并提出了针对性的建议。
Abstract:Bauxite is one of the strategic minerals in China, an important material basis for national economic construction, and plays a significant role in ensuring the security and stability of the supply chain of the industrial chain. The bauxite resource reserves, distribution, types and resource characteristics in China were overviewed. The ore material composition and ore characteristics of the main bauxite mining areas in China were compared, the applications and quality requirements of bauxite in different industries as well as the current status of bauxite beneficiation technology, and the comprehensive utilization technology of co-associated components and elements, tailings, red mud and refractory waste were introduced. Finally, the main problems associated with bauxite development and utilization were analyzed, and targeted suggestions were put forward.
-
Key words:
- bauxite /
- resource characteristics /
- mineral processing /
- red mud /
- comprehensive utilization
-
-
表 1 我国主要产区的铝土矿主要化学组成及矿物组成
Table 1. Main chemical and mineral composition of bauxite in main production areas of China
/% 省区 矿区 主要化学成分 主要矿物组成 SiO2 Al2O3 TFe TiO2 山西 忻州天和 12.74 60.88 10.45 3.11 一水硬铝石70~75、高岭石15~20、锐钛矿2等 岢岚 11.40 47.22 23.86 2.13 一水硬铝石60.3、伊利石16.7、高岭石8.1、赤铁矿4.1、锐钛矿2.7、碳酸盐1.8等 长治 18.11 57.09 4.55 3.27 一水硬铝石54.8、高岭石26.1、伊利石7.9、赤铁矿4.3、锐钛矿2.3、碳酸盐2.5等 孝义 13.69 60.72 4.66 2.69 一水硬铝石60.5、高岭石25.2、赤铁矿4.3、伊利石4.6、锐钛矿1.8、碳酸盐1.3等 河南 渑池曲家村 17.86 53.91 1.82 3.73 一水硬铝石50~55、伊利石20~25、绿泥石、高岭石3~5、锐钛矿2等 渑池贯沟 11.08 68.21 0.73 3.80 一水硬铝石75~80、伊利石15~20、高,岭石2、锐钛矿2等 新密 8.62 69.02 0.77 3.17 一水硬铝石76.2、伊利石17.9、锐钛矿3.2、高岭石2.6、石英1.4等 巩义小关 11.91 68.09 0.77 3.10 一水硬铝石73.4、伊利石21.7、锐钛矿3.4等 禹州 13.21 66.65 1.00 3.23 一水硬铝石69.6、伊利石11.8、叶蜡石9.4、高岭石5.9、锐钛矿3.2等 贵州 贵阳清镇 11.07 62.78 7.51 2.94 一水硬铝石65.62、高岭石11.19、伊利石8.95、赤铁矿4.07、褐铁矿3.26、锐钛矿2.03、黄铁矿1.01等 遵义龙坪 18.90 57.90 8.36 2.40 一水硬铝石78、云母8.17、高岭石7.80、赤铁矿2.40、磁铁矿1.00、
锐钛矿1.64等遵义博州 10.00 69.40 3.69 3.64 一水硬铝石82.5、云母4.76、高岭石5.28、锐钛矿4.62、赤铁矿2.02 遵义道真* 1.66 83.90 4.27 4.68 一水硬铝石91.0、锐钛矿3.71、金红石1.14、针铁矿2.25等 广西 崇左 31.85 42.37 15.83 1.85 一水硬铝石25、叶蜡石44~49、高岭石10~15、赤铁矿5、伊利石3、长石5等 田阳 16.70 53.90 5.19 3.20 一水硬铝石63、云母26、高岭石1.13、锐钛矿7.77、赤铁矿1.55等 平果 28.30 39.30 17.20 2.85 一水硬铝石68、高岭石6.68、石英9、蛋白石3.16、赤铁矿4.53、锐钛矿2.42、三水铝石5.43等 德保 11.60 51.50 18.17 3.96 一水硬铝石80、石英11、赤铁矿5、锐钛矿2、高岭石2等 贵港 15.04 30.79 30.17 2.02 三水铝石30~35、一水软铝石10~15、针铁矿15~20、赤铁矿10~15、
石英5~10、高岭石5、伊利石3、锐钛矿2等*该矿为未开发利用矿床,分析采样样品为露头矿体。 表 2 高铝矾土熟料理化指标
Table 2. Physical and chemical indexes of bauxite clinker
/% 代号 化学成分质量分数 Al2O3 Fe2O3 TiO2 CaO+ MgO K2O+Na2O GL90 ≥89.5 ≤1.5 ≤4.0 ≤0.35 ≤0.35 GL88A ≥87.5 ≤1.6 ≤4.0 ≤0.4 ≤0.4 GL88B ≥87.5 ≤2.0 ≤4.0 ≤0.4 ≤0.4 GL85A ≥85 ≤1.8 ≤4.0 ≤0.4 ≤0.4 GL85B ≥85 ≤2.0 ≤4.0 ≤0.4 ≤0.4 GL80 >80 ≤2.0 ≤4.0 ≤0.5 ≤0.5 GL70 70~80 ≤2.0 − ≤0.6 ≤0.6 GL60 60~70 ≤0 − ≤0.6 ≤0.6 GL50 50~60 ≤2.5 − ≤0.6 ≤0.6 表 3 中铝河南分公司中州铝厂烧结法与拜耳法赤泥化学分析结果
Table 3. Chemical analysis results of sintered and Bayer red mud at Zhongzhou Aluminum Plant of CHALCO Henan Branch
/% 样品名称 Al2O3 SiO2 CaO Na2O Fe2O3 TiO2 烧结法赤泥 20.10 17.80 10.30 8.58 27.70 3.70 拜耳法赤泥 10.2 20.1 39.01 3.41 10.40 3.05 选矿拜耳法尾矿 43.30 30.40 0.55 0.32 10.00 2.69 -
[1] 张彦平, 王林俊, 倪文, 等. 我国铝矾土资源利用现状及发展建议[J]. 矿物学报, 2012(suppl): 210−211.
ZHANG Y P, WANG L J, NI W, et al. China's bauxite resources utilization status and development suggestions[J]. Acta Mineralogica Sinica, 2012(suppl): 210−211.
[2] 韩跃新, 柳晓, 何发钰, 等. 我国铝土矿资源及其选矿技术进展[J]. 矿产保护与利用, 2019(4): 151−158.
HAN Y X, LIU X, HE F Y, et al. Current situation of bauxite resource and its beneficiation technology in China[J]. Conservation and Utilization of Mineral Resources, 2019(4): 151−158.
[3] USGS, Mineral commodity summaries 2021[R]. Virginia: U. S. : U. S. Government Publishing Office, 2020: 30-31.
[4] 中华人民共和国自然资源部, 中国矿产资源报告(2021)[R]. 北京: 地质出版社, 2021: 5-7.
Ministry of Natural Resources of the People's Republic of China. China mineral resources 2021[R]. Beijing: Geological Publishing House, 2021: 5-7.
[5] 安鹏宇. 中国企业境外投资铝土矿供矿前景分析及建议[J]. 中国资源综合利用, 2018, 36(12): 76−81,86. doi: 10.3969/j.issn.1008-9500.2018.12.023
AN P Y. Analysis and suggestions on the prospect of bauxite supply overseas investmeng for Chinese enerprises[J]. China Resources Comprehensive Utilization, 2018, 36(12): 76−81,86. doi: 10.3969/j.issn.1008-9500.2018.12.023
[6] LI C F, WANG A J, CHEN X J, et al. Regional distribution and sustainable development strategy of mineral resources in China[J]. Chinese Geographical Science, 2013, 23(4): 470−481. doi: 10.1007/s11769-013-0611-z
[7] 高兰, 王登红, 熊晓云, 等. 中国铝土矿资源特征及潜力分析[J]. 中国地质, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005
GAO L, WANG D H, XIONG X Y, et al. Minerogenetic characteristics and resource potential analysis of bauxite in China[J]. Geology in China, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005
[8] 孙莉, 肖克炎, 娄德波. 中国铝土矿资源潜力预测评价[J]. 地学前缘, 2018, 25(3): 82−94.
SUN L, XIAO K Y, LOU D B. Mineral prospectivity of bauxite resources in China[J]. Earth Science Frontiers, 2018, 25(3): 82−94.
[9] 龙克树, 付勇, 龙珍, 等. 全球铝土矿中稀土和钪的资源潜力分析[J]. 地质学报, 2019, 93(6): 1279−1295. doi: 10.3969/j.issn.0001-5717.2019.06.009
LONG K S, FU Y, LONG Z, et al. Resource potential analysis of REE and Sc in global bauxite[J]. Acta Geologica Sinica, 2019, 93(6): 1279−1295. doi: 10.3969/j.issn.0001-5717.2019.06.009
[10] 晋腾超, 王庆伟, 纪小会, 等. 我国铝矾土品位下降对棕刚玉冶炼影响的研究[J]. 矿产保护与利用, 2016(2): 43−47.
JIN T C, WANG Q W, JI X H, et al. Influence of the grade declining in Chinese bauxite on brown corundum smelting[J]. Conservation and Utilization of Mineral Resources, 2016(2): 43−47.
[11] 中华人民共和国国家发展和改革委员会. 高铝矾土熟料: YB/T 5179-2005[S]. 北京: 冶金工业出版社: 2005.
National Development and Reform Commission of the People's Republic of China. Bauxite clinker: YB/T 5179-2005[S]. Beijing: Metallurgical Industry Publishing House: 2005.
[12] 中华人民共和国国家自然资源部. 矿产地质勘查规范 铝土矿: DZ/T 0202-2020[S]. 北京: 中国地质出版社: 2020.
Ministry of Natural Resources of the People's Republic of China. Specifications for bauxite mineral exploration: DZ/T 0202-2020[S]. Beijing: Geological Publishing House: 2020.
[13] 钮因健, 夏忠. 铝土矿选矿-拜耳法生产氧化铝新工艺[J]. 中国有色金属学报, 2001, 11(Suppl.1): 25−30.
NIU Y J, XIA Z. Mineral processing of aluminium-a new technology of producing alumine by Bayer process[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(Suppl.1): 25−30.
[14] 曾庆猛, 黄昂, 李峰克, 等. 铝土矿选矿脱硅对拜耳法的经济性[J]. 铝镁通讯, 2013(2): 4−8.
ZENG Q M, HUANG A, KI F K, et al. Economics of bauxite ore beneficiation desiliconization to Bayer method[J]. LV MEI TONG XUN, 2013(2): 4−8.
[15] 宋建文, 刘全军, 高扬, 等. 云南某高硅铝土矿选矿试验研究[J]. 轻金属, 2017(6): 1−5. doi: 10.13662/j.cnki.qjs.2017.06.001
SONG J W, LIU Q J, GAO Y, et al. Experimental study on flotation of bauxite with high silicon in Yunnan[J]. Light Metals, 2017(6): 1−5. doi: 10.13662/j.cnki.qjs.2017.06.001
[16] 周杰强, 严峥, 梅光军, 等. 重庆某铝土矿反浮选脱硫脱硅工艺技术研究[J]. 矿冶工程, 2022, 42(1): 61−63. doi: 10.3969/j.issn.0253-6099.2022.01.014
ZHOU J Q, YAN Z, MEI G J, et al. Desulfurization and desiliconization of bauxite ore from Chongqing by reverse flotation[J]. Mining and Metallurgical Engineering, 2022, 42(1): 61−63. doi: 10.3969/j.issn.0253-6099.2022.01.014
[17] 蔡振波, 徐会华, 陈秋虎, 等. 广西某高硫铝土矿反浮选脱硫—聚团浮选脱硅试验[J]. 金属矿山, 2016, 477(3): 99−105. doi: 10.3969/j.issn.1001-1250.2016.03.021
CAI Z B, XU H H, CHEN Q H, et al. Desulfurization and aggregation desilication reverse flotation experiments on a high sulfur bauxite in Guangxi[J]. Metal Mine, 2016, 477(3): 99−105. doi: 10.3969/j.issn.1001-1250.2016.03.021
[18] 李小静, 曹传辉, 刘石梅, 等. 铝土矿除铁试验研究[J]. 非金属矿, 2013, 36(6): 58−59. doi: 10.3969/j.issn.1000-8098.2013.06.019
LI X J, CAO C H, LIU S M, et al. Research on removal of iron from bauxite resources[J]. Non-Metallic Mines, 2013, 36(6): 58−59. doi: 10.3969/j.issn.1000-8098.2013.06.019
[19] 范宏鹏, 叶霖, 黄智龙. 铝土矿(岩)中伴生的锂资源[J]. 矿物学报, 2021, 41(C1): 382−390. doi: 10.16461/j.cnki.1000-4734.2021.41.090
FAN H P, YE L, HUANG Z L. The associated lithium resource in bauxite(bauxite-bearing rock)[J]. Acta Mineralogica Sinica, 2021, 41(C1): 382−390. doi: 10.16461/j.cnki.1000-4734.2021.41.090
[20] 王誉树, 孙景敏, 李翠芬, 等. 河南省铝土矿伴生钛资源调查研究[J]. 现代矿业, 2019, 35(3): 132−135. doi: 10.3969/j.issn.1674-6082.2019.03.036
WANG Y S, SUN J M, LI C F, et al. Investigation and research on associated titanium resources of bauxite ore in Henan Province[J]. Modern Mining, 2019, 35(3): 132−135. doi: 10.3969/j.issn.1674-6082.2019.03.036
[21] 陈志友, 冯其明, 石晴. 低品位高铁铝土矿工艺矿物学与铁的回收技术研究[J]. 矿物学报, 2018, 38(1): 123−128. doi: 10.16461/j.cnki.1000-4734.2018.015
CHEN Z Y, FENG Q M, SHI Q. A study on process mineralogy of low-grade high-iron bauxite and iron recovery technology[J]. Acta Mineralogica Sinica, 2018, 38(1): 123−128. doi: 10.16461/j.cnki.1000-4734.2018.015
[22] 张荣臻, 云辉, 刘百顺, 等. 河南某铝土矿中锂的浮选回收与提取试验[J]. 现代矿业, 2020, 36(11): 113−116. doi: 10.3969/j.issn.1674-6082.2020.11.030
ZHANG R Z, YUN H, LIU B S, et al. Study on flotation recovery and extraction test of Lithium-bearing bauxite from Henan Province[J]. Modern Mining, 2020, 36(11): 113−116. doi: 10.3969/j.issn.1674-6082.2020.11.030
[23] 刘万超, 杨家宽, 肖波. 拜耳法赤泥中铁的提取及残渣制备建材[J]. 中国有色金属学报, 2008, 18(1): 187−192. doi: 10.3321/j.issn:1004-0609.2008.01.031
LIU W C, YANG J K, XIAO B. Recovering iron and preparing building material with residues from Bayer red mud[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(1): 187−192. doi: 10.3321/j.issn:1004-0609.2008.01.031
[24] GUO Y H, GAO J J, XU H J, et al. Nuggets production by direct reduction of high iron red mud[J]. Journal of iron and Steel Research, International, 2013, 20(5): 24−27. doi: 10.1016/S1006-706X(13)60092-8
[25] 彭雪清, 黄光洪. 平果铝土矿氧化铝赤泥回收铁精矿的生产实践[J]. 湖南有色金属, 2015, 31(5): 10−15. doi: 10.3969/j.issn.1003-5540.2015.05.004
PENG X Q, HUANG G H. Production practice of Fe concentrate recovery out of the red mud in Alumina produced from Pingguo bauxite[J]. Hunan Nonferrous Metals, 2015, 31(5): 10−15. doi: 10.3969/j.issn.1003-5540.2015.05.004
[26] HUANG Y F, HAN G H, LIU J T, et al. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics[J]. Journal of Hazardous Materials. 2016, 301: 46-55.
[27] HUANG Y F, CHAI W C, HAN G H, et al. A perspective of stepwise utilisation of Bayer red mud: Step two—Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation[J]. Journal of Hazardous Materials. 2016, 307: 318-327.
[28] ABHILASH, SHIVENDRA S, MANISH K S, et al. Extraction of lanthanum and cerium from Indian red mud[J]. International Journal of Mineral Processing, 2014, 127: 70−73. doi: 10.1016/j.minpro.2013.12.009
[29] WANG L, SUN N, TANG H H, et al. A review on comprehensive utilization of red mud and prospect analysis[J]. Minerals, 2019(9): 362. doi: 10.3390/min9060362
[30] LIU X, HAN Y X, HE F Y, et al. Characteristic, hazard and iron recovery technology of red mud - Acritical review[J]. Journal of Hazardous Materials. 2021, 420: 126542. https://doi.org/10.1016/j.jhazmat.2021.126542.
[31] 刘东方, 刘文凯, 薛宝达, 等. 铝土矿尾矿合成莫来石的研究[J]. 矿业科学学报, 2016, 1(3): 256−260.
LIU D F, LIU W K, XUE B D, et al. Study on synthesizing mullite with bauxite tailing[J]. Journal of Mining Science and Technology, 2016, 1(3): 256−260.
[32] 申献江, 马冬阳, 张梅, 等. 铝土矿尾矿除杂及合成刚玉-莫来石研究[J]. 耐火材料, 2015, 51(4): 256−259.
SHEN X J, MA D Y, ZHANG M. et al. Synthesis of corundum- mullite composites from impurity-removed bauxite tailings[J]. Refractories, 2015, 51(4): 256−259.
[33] 杨会智, 陈昌平, 孙洪巍, 等. 铝土矿尾矿微晶玻璃研制[J]. 矿业研究与开发, 2007, 27(6): 48−49. doi: 10.3969/j.issn.1005-2763.2007.06.016
YANG H Z, CHEN C P, SUN H W, et al. Study on preparation of glass-ceramics using bauxite tailings[J]. Mining Research and Development, 2007, 27(6): 48−49. doi: 10.3969/j.issn.1005-2763.2007.06.016
[34] 李志新, 马先伟, 牛季收, 等. 铝矾土尾矿烧结透水砖的性能调控[J]. 河南城建学院学报, 2021, 30(1): 60−65.
LI Z X, MA X W, NIU J S, et al. Performances control of sintered permeable bricks prepared with bauxite tailings[J]. Journal of Henan University of Urban Construction, 2021, 30(1): 60−65.
[35] 伍世衍. 利用低品位铝土矿制备低烧高强硅铝质陶瓷的研究[D]. 广州: 华南理工大学: 2014.
WU S Y. Preparation of low-fired high-strength silica-alumina ceramics using low-grade bauxite[D]. Guangzhou: South China University of Technology: 2014.
[36] 李悦. 利用铝矾土尾矿制备过滤用多孔陶瓷[J]. 轻金属, 2016(3): 9−12.
LI Y. Production of porous ceramic for filtration by using bauxite tailings[J]. Light Metals, 2016(3): 9−12.
[37] 刘三军, 刘永, 李向阳, 等. 用铝土矿选矿尾矿制备聚合氯化铝及污水处理试验研究[J]. 湿法冶金, 2020, 39(6): 539−542.
LIU S J, LIU Y, LI X Y, et al. Preparation of polyaluminum chloride using bauxite tailings and its application in wastewater treatment[J]. Hydrometallurgy of China, 2020, 39(6): 539−542.
[38] 王振东, 张梅, 郭敏. 铝土矿尾矿制备4A分子筛的研究[J]. 中国稀土学报, 2012, 30: 472−476.
WANG Z D, ZHANG M, GUO M. Synthesis and characterization of zeolite 4A from bauxite tailings[J]. Journal of Chinese society of RARE earths, 2012, 30: 472−476.
[39] 谭俊华, 史熙亮, 朱开金, 等. 利用低品位铝矾土和铸造废砂制备高贝利特硫铝酸盐水泥的研究[J]. 硅酸盐通报, 2017, 36(12): 4284−4290+4301.
TAN J H, SHI X L, ZHU K J, et al. Preparation of high belite sulphoaluminate cement by low grade bauxite and foundry waste sand[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4284−4290+4301.
[40] 姚丕强, 俞为民, 张学文, 等. 低品位铝矾土配料煅烧高性能贝利特硫铝酸盐水泥熟料的工业试验[J]. 水泥, 2017(3): 1−5.
YAO P Q, YU W M, ZHANG X W, et al. Industrial testing of low grade bauxite batch calcined high performance belite sulfate cement clinker[J]. Cement, 2017(3): 1−5.
[41] LIU Y T, QIN Z H, CHEN B. Experimental research on magnesium phosphate cements modified byred mud[J]. Construction and Building Materials, 2020, 231: 117−131.
[42] YE N, YANG J K, LIANG S, et al. Synthesis and strength optimization of one-part geopolymer based on red mud[J]. Construction and Building Materials, 2016, 111: 317−325. doi: 10.1016/j.conbuildmat.2016.02.099
[43] 刘俊霞, 李忠育, 张茂亮, 等. 赤泥地聚物水泥力学性能和聚合机理[J]. 建筑材料学报, 2022, 25(2): 178−183. doi: 10.3969/j.issn.1007-9629.2022.02.010
LIU J X, LI Z Y, ZHANG M L, et al. Mechanical property and polymerization mechanism of red mud geopolymer cement[J]. Journal of Building Materials, 2022, 25(2): 178−183. doi: 10.3969/j.issn.1007-9629.2022.02.010
[44] ZENG H, LYU F, SUN W, et al. Progress on the industrial applications of red mud with a focus on China[J]. Minerals, 2020, 10(9): 773. doi: 10.3390/min10090773
[45] 张雪, 王重庆, 曹亦俊. 赤泥固废土壤化修复研究进展[J]. 有色金属(冶炼部分), 2021(3): 84−92.
ZHANG X, WANG Z Q, CAO Y J. Research progress on soilification of red mud solid waste[J]. Nonferrous Metals (Extractive Metallurgy), 2021(3): 84−92.
[46] WANG L, HU G G, LYU F, et al. Application of red mud in wastewater treatment[J]. Minerals, 2019(9): 281. doi: 10.3390/min9050281
[47] PULFORD I D, HARGREAVES J S, DURISOVÁ J, et al. Carbonised red mud-A new water treatment product made from a waste material[J]. Journal of Environmental Management, 2012, 100: 59−64.
[48] VISHWAJEET S. Y, MURARI P, JEESHAN K, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of Hazardous Materials, 2010, 176: 1044−1050. doi: 10.1016/j.jhazmat.2009.11.146
[49] RAMESH C S, RAJ K P, BANKIM C R. Neutralization of red mud using CO2 sequestration cycle[J]. Journal of Hazardous Materials, 2010, 179: 28−34. doi: 10.1016/j.jhazmat.2010.02.052
[50] 曹瑞雪, 康泽双, 刘万超, 等. 赤泥吸收矿化CO2技术研究[J]. 有色金属(冶炼部分), 2022(4): 57−60.
CAO R X, KANG Z S, LIU W C, et al. Absorption and mineralization of CO2 with red mud[J]. Nonferrous Metals (Extractive Metallurgy), 2022(4): 57−60.
-