我国铝土矿资源特征及综合利用技术研究进展

刘玉林, 程宏伟. 我国铝土矿资源特征及综合利用技术研究进展[J]. 矿产保护与利用, 2022, 42(6): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.06.014
引用本文: 刘玉林, 程宏伟. 我国铝土矿资源特征及综合利用技术研究进展[J]. 矿产保护与利用, 2022, 42(6): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.06.014
LIU Yulin, CHENG Hongwei. Research Progress on Characteristics and Comprehensive Utilization of Bauxite Resource in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.06.014
Citation: LIU Yulin, CHENG Hongwei. Research Progress on Characteristics and Comprehensive Utilization of Bauxite Resource in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.06.014

我国铝土矿资源特征及综合利用技术研究进展

  • 基金项目: 国家重点研发计划课题(2018YFC1901501)
详细信息
    作者简介: 刘玉林(1983—),湖北黄冈人,硕士,高级工程师,主要从事矿业固废综合利用工作,E-mail:272989311@qq.com
  • 中图分类号: TD952.5;TD98

Research Progress on Characteristics and Comprehensive Utilization of Bauxite Resource in China

  • 铝土矿是我国战略性矿产之一,是国家经济建设的重要物质基础,在保障产业链供应链安全稳定中具有重要作用。概述了我国铝土矿资源储量、分布、类型以及资源特点;对比了我国铝土矿主要矿区的矿石物质组成与矿石特征;介绍了铝土矿在不同行业的应用情况及品质要求,详细阐述了铝土矿选矿技术现状,以及共伴生组分及元素、尾矿、赤泥和耐火材料废料的综合利用技术,最后分析了铝土矿在开发利用过程存在的主要问题,并提出了针对性的建议。

  • 加载中
  • 表 1  我国主要产区的铝土矿主要化学组成及矿物组成

    Table 1.  Main chemical and mineral composition of bauxite in main production areas of China /%

    省区矿区主要化学成分主要矿物组成
    SiO2Al2O3TFeTiO2
    山西忻州天和12.7460.8810.453.11一水硬铝石70~75、高岭石15~20、锐钛矿2等
    岢岚11.4047.2223.862.13一水硬铝石60.3、伊利石16.7、高岭石8.1、赤铁矿4.1、锐钛矿2.7、碳酸盐1.8等
    长治18.1157.094.553.27一水硬铝石54.8、高岭石26.1、伊利石7.9、赤铁矿4.3、锐钛矿2.3、碳酸盐2.5等
    孝义13.6960.724.662.69一水硬铝石60.5、高岭石25.2、赤铁矿4.3、伊利石4.6、锐钛矿1.8、碳酸盐1.3等
    河南渑池曲家村17.8653.911.823.73一水硬铝石50~55、伊利石20~25、绿泥石、高岭石3~5、锐钛矿2等
    渑池贯沟11.0868.210.733.80一水硬铝石75~80、伊利石15~20、高,岭石2、锐钛矿2等
    新密8.6269.020.773.17一水硬铝石76.2、伊利石17.9、锐钛矿3.2、高岭石2.6、石英1.4等
    巩义小关11.9168.090.773.10一水硬铝石73.4、伊利石21.7、锐钛矿3.4等
    禹州13.2166.651.003.23一水硬铝石69.6、伊利石11.8、叶蜡石9.4、高岭石5.9、锐钛矿3.2等
    贵州贵阳清镇11.0762.787.512.94一水硬铝石65.62、高岭石11.19、伊利石8.95、赤铁矿4.07、褐铁矿3.26、锐钛矿2.03、黄铁矿1.01等
    遵义龙坪18.9057.908.362.40一水硬铝石78、云母8.17、高岭石7.80、赤铁矿2.40、磁铁矿1.00、
    锐钛矿1.64等
    遵义博州10.0069.403.693.64一水硬铝石82.5、云母4.76、高岭石5.28、锐钛矿4.62、赤铁矿2.02
    遵义道真*1.6683.904.274.68一水硬铝石91.0、锐钛矿3.71、金红石1.14、针铁矿2.25等
    广西崇左31.8542.3715.831.85一水硬铝石25、叶蜡石44~49、高岭石10~15、赤铁矿5、伊利石3、长石5等
    田阳16.7053.905.193.20一水硬铝石63、云母26、高岭石1.13、锐钛矿7.77、赤铁矿1.55等
    平果28.3039.3017.202.85一水硬铝石68、高岭石6.68、石英9、蛋白石3.16、赤铁矿4.53、锐钛矿2.42、三水铝石5.43等
    德保11.6051.5018.173.96一水硬铝石80、石英11、赤铁矿5、锐钛矿2、高岭石2等
    贵港15.0430.7930.172.02三水铝石30~35、一水软铝石10~15、针铁矿15~20、赤铁矿10~15、
    石英5~10、高岭石5、伊利石3、锐钛矿2等
    *该矿为未开发利用矿床,分析采样样品为露头矿体。
    下载: 导出CSV

    表 2  高铝矾土熟料理化指标

    Table 2.  Physical and chemical indexes of bauxite clinker /%

    代号化学成分质量分数
    Al2O3Fe2O3TiO2CaO+ MgOK2O+Na2O
    GL90≥89.5≤1.5≤4.0≤0.35≤0.35
    GL88A≥87.5≤1.6≤4.0≤0.4≤0.4
    GL88B≥87.5≤2.0≤4.0≤0.4≤0.4
    GL85A≥85≤1.8≤4.0≤0.4≤0.4
    GL85B≥85≤2.0≤4.0≤0.4≤0.4
    GL80>80≤2.0≤4.0≤0.5≤0.5
    GL7070~80≤2.0≤0.6≤0.6
    GL6060~70≤0≤0.6≤0.6
    GL5050~60≤2.5≤0.6≤0.6
    下载: 导出CSV

    表 3  中铝河南分公司中州铝厂烧结法与拜耳法赤泥化学分析结果

    Table 3.  Chemical analysis results of sintered and Bayer red mud at Zhongzhou Aluminum Plant of CHALCO Henan Branch /%

    样品名称Al2O3SiO2CaONa2OFe2O3TiO2
    烧结法赤泥20.1017.8010.308.5827.703.70
    拜耳法赤泥10.220.139.013.4110.403.05
    选矿拜耳法尾矿43.3030.400.550.3210.002.69
    下载: 导出CSV
  • [1]

    张彦平, 王林俊, 倪文, 等. 我国铝矾土资源利用现状及发展建议[J]. 矿物学报, 2012(suppl): 210−211.

    ZHANG Y P, WANG L J, NI W, et al. China's bauxite resources utilization status and development suggestions[J]. Acta Mineralogica Sinica, 2012(suppl): 210−211.

    [2]

    韩跃新, 柳晓, 何发钰, 等. 我国铝土矿资源及其选矿技术进展[J]. 矿产保护与利用, 2019(4): 151−158.

    HAN Y X, LIU X, HE F Y, et al. Current situation of bauxite resource and its beneficiation technology in China[J]. Conservation and Utilization of Mineral Resources, 2019(4): 151−158.

    [3]

    USGS, Mineral commodity summaries 2021[R]. Virginia: U. S. : U. S. Government Publishing Office, 2020: 30-31.

    [4]

    中华人民共和国自然资源部, 中国矿产资源报告(2021)[R]. 北京: 地质出版社, 2021: 5-7.

    Ministry of Natural Resources of the People's Republic of China. China mineral resources 2021[R]. Beijing: Geological Publishing House, 2021: 5-7.

    [5]

    安鹏宇. 中国企业境外投资铝土矿供矿前景分析及建议[J]. 中国资源综合利用, 2018, 36(12): 76−81,86. doi: 10.3969/j.issn.1008-9500.2018.12.023

    AN P Y. Analysis and suggestions on the prospect of bauxite supply overseas investmeng for Chinese enerprises[J]. China Resources Comprehensive Utilization, 2018, 36(12): 76−81,86. doi: 10.3969/j.issn.1008-9500.2018.12.023

    [6]

    LI C F, WANG A J, CHEN X J, et al. Regional distribution and sustainable development strategy of mineral resources in China[J]. Chinese Geographical Science, 2013, 23(4): 470−481. doi: 10.1007/s11769-013-0611-z

    [7]

    高兰, 王登红, 熊晓云, 等. 中国铝土矿资源特征及潜力分析[J]. 中国地质, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005

    GAO L, WANG D H, XIONG X Y, et al. Minerogenetic characteristics and resource potential analysis of bauxite in China[J]. Geology in China, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005

    [8]

    孙莉, 肖克炎, 娄德波. 中国铝土矿资源潜力预测评价[J]. 地学前缘, 2018, 25(3): 82−94.

    SUN L, XIAO K Y, LOU D B. Mineral prospectivity of bauxite resources in China[J]. Earth Science Frontiers, 2018, 25(3): 82−94.

    [9]

    龙克树, 付勇, 龙珍, 等. 全球铝土矿中稀土和钪的资源潜力分析[J]. 地质学报, 2019, 93(6): 1279−1295. doi: 10.3969/j.issn.0001-5717.2019.06.009

    LONG K S, FU Y, LONG Z, et al. Resource potential analysis of REE and Sc in global bauxite[J]. Acta Geologica Sinica, 2019, 93(6): 1279−1295. doi: 10.3969/j.issn.0001-5717.2019.06.009

    [10]

    晋腾超, 王庆伟, 纪小会, 等. 我国铝矾土品位下降对棕刚玉冶炼影响的研究[J]. 矿产保护与利用, 2016(2): 43−47.

    JIN T C, WANG Q W, JI X H, et al. Influence of the grade declining in Chinese bauxite on brown corundum smelting[J]. Conservation and Utilization of Mineral Resources, 2016(2): 43−47.

    [11]

    中华人民共和国国家发展和改革委员会. 高铝矾土熟料: YB/T 5179-2005[S]. 北京: 冶金工业出版社: 2005.

    National Development and Reform Commission of the People's Republic of China. Bauxite clinker: YB/T 5179-2005[S]. Beijing: Metallurgical Industry Publishing House: 2005.

    [12]

    中华人民共和国国家自然资源部. 矿产地质勘查规范 铝土矿: DZ/T 0202-2020[S]. 北京: 中国地质出版社: 2020.

    Ministry of Natural Resources of the People's Republic of China. Specifications for bauxite mineral exploration: DZ/T 0202-2020[S]. Beijing: Geological Publishing House: 2020.

    [13]

    钮因健, 夏忠. 铝土矿选矿-拜耳法生产氧化铝新工艺[J]. 中国有色金属学报, 2001, 11(Suppl.1): 25−30.

    NIU Y J, XIA Z. Mineral processing of aluminium-a new technology of producing alumine by Bayer process[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(Suppl.1): 25−30.

    [14]

    曾庆猛, 黄昂, 李峰克, 等. 铝土矿选矿脱硅对拜耳法的经济性[J]. 铝镁通讯, 2013(2): 4−8.

    ZENG Q M, HUANG A, KI F K, et al. Economics of bauxite ore beneficiation desiliconization to Bayer method[J]. LV MEI TONG XUN, 2013(2): 4−8.

    [15]

    宋建文, 刘全军, 高扬, 等. 云南某高硅铝土矿选矿试验研究[J]. 轻金属, 2017(6): 1−5. doi: 10.13662/j.cnki.qjs.2017.06.001

    SONG J W, LIU Q J, GAO Y, et al. Experimental study on flotation of bauxite with high silicon in Yunnan[J]. Light Metals, 2017(6): 1−5. doi: 10.13662/j.cnki.qjs.2017.06.001

    [16]

    周杰强, 严峥, 梅光军, 等. 重庆某铝土矿反浮选脱硫脱硅工艺技术研究[J]. 矿冶工程, 2022, 42(1): 61−63. doi: 10.3969/j.issn.0253-6099.2022.01.014

    ZHOU J Q, YAN Z, MEI G J, et al. Desulfurization and desiliconization of bauxite ore from Chongqing by reverse flotation[J]. Mining and Metallurgical Engineering, 2022, 42(1): 61−63. doi: 10.3969/j.issn.0253-6099.2022.01.014

    [17]

    蔡振波, 徐会华, 陈秋虎, 等. 广西某高硫铝土矿反浮选脱硫—聚团浮选脱硅试验[J]. 金属矿山, 2016, 477(3): 99−105. doi: 10.3969/j.issn.1001-1250.2016.03.021

    CAI Z B, XU H H, CHEN Q H, et al. Desulfurization and aggregation desilication reverse flotation experiments on a high sulfur bauxite in Guangxi[J]. Metal Mine, 2016, 477(3): 99−105. doi: 10.3969/j.issn.1001-1250.2016.03.021

    [18]

    李小静, 曹传辉, 刘石梅, 等. 铝土矿除铁试验研究[J]. 非金属矿, 2013, 36(6): 58−59. doi: 10.3969/j.issn.1000-8098.2013.06.019

    LI X J, CAO C H, LIU S M, et al. Research on removal of iron from bauxite resources[J]. Non-Metallic Mines, 2013, 36(6): 58−59. doi: 10.3969/j.issn.1000-8098.2013.06.019

    [19]

    范宏鹏, 叶霖, 黄智龙. 铝土矿(岩)中伴生的锂资源[J]. 矿物学报, 2021, 41(C1): 382−390. doi: 10.16461/j.cnki.1000-4734.2021.41.090

    FAN H P, YE L, HUANG Z L. The associated lithium resource in bauxite(bauxite-bearing rock)[J]. Acta Mineralogica Sinica, 2021, 41(C1): 382−390. doi: 10.16461/j.cnki.1000-4734.2021.41.090

    [20]

    王誉树, 孙景敏, 李翠芬, 等. 河南省铝土矿伴生钛资源调查研究[J]. 现代矿业, 2019, 35(3): 132−135. doi: 10.3969/j.issn.1674-6082.2019.03.036

    WANG Y S, SUN J M, LI C F, et al. Investigation and research on associated titanium resources of bauxite ore in Henan Province[J]. Modern Mining, 2019, 35(3): 132−135. doi: 10.3969/j.issn.1674-6082.2019.03.036

    [21]

    陈志友, 冯其明, 石晴. 低品位高铁铝土矿工艺矿物学与铁的回收技术研究[J]. 矿物学报, 2018, 38(1): 123−128. doi: 10.16461/j.cnki.1000-4734.2018.015

    CHEN Z Y, FENG Q M, SHI Q. A study on process mineralogy of low-grade high-iron bauxite and iron recovery technology[J]. Acta Mineralogica Sinica, 2018, 38(1): 123−128. doi: 10.16461/j.cnki.1000-4734.2018.015

    [22]

    张荣臻, 云辉, 刘百顺, 等. 河南某铝土矿中锂的浮选回收与提取试验[J]. 现代矿业, 2020, 36(11): 113−116. doi: 10.3969/j.issn.1674-6082.2020.11.030

    ZHANG R Z, YUN H, LIU B S, et al. Study on flotation recovery and extraction test of Lithium-bearing bauxite from Henan Province[J]. Modern Mining, 2020, 36(11): 113−116. doi: 10.3969/j.issn.1674-6082.2020.11.030

    [23]

    刘万超, 杨家宽, 肖波. 拜耳法赤泥中铁的提取及残渣制备建材[J]. 中国有色金属学报, 2008, 18(1): 187−192. doi: 10.3321/j.issn:1004-0609.2008.01.031

    LIU W C, YANG J K, XIAO B. Recovering iron and preparing building material with residues from Bayer red mud[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(1): 187−192. doi: 10.3321/j.issn:1004-0609.2008.01.031

    [24]

    GUO Y H, GAO J J, XU H J, et al. Nuggets production by direct reduction of high iron red mud[J]. Journal of iron and Steel Research, International, 2013, 20(5): 24−27. doi: 10.1016/S1006-706X(13)60092-8

    [25]

    彭雪清, 黄光洪. 平果铝土矿氧化铝赤泥回收铁精矿的生产实践[J]. 湖南有色金属, 2015, 31(5): 10−15. doi: 10.3969/j.issn.1003-5540.2015.05.004

    PENG X Q, HUANG G H. Production practice of Fe concentrate recovery out of the red mud in Alumina produced from Pingguo bauxite[J]. Hunan Nonferrous Metals, 2015, 31(5): 10−15. doi: 10.3969/j.issn.1003-5540.2015.05.004

    [26]

    HUANG Y F, HAN G H, LIU J T, et al. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics[J]. Journal of Hazardous Materials. 2016, 301: 46-55.

    [27]

    HUANG Y F, CHAI W C, HAN G H, et al. A perspective of stepwise utilisation of Bayer red mud: Step two—Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation[J]. Journal of Hazardous Materials. 2016, 307: 318-327.

    [28]

    ABHILASH, SHIVENDRA S, MANISH K S, et al. Extraction of lanthanum and cerium from Indian red mud[J]. International Journal of Mineral Processing, 2014, 127: 70−73. doi: 10.1016/j.minpro.2013.12.009

    [29]

    WANG L, SUN N, TANG H H, et al. A review on comprehensive utilization of red mud and prospect analysis[J]. Minerals, 2019(9): 362. doi: 10.3390/min9060362

    [30]

    LIU X, HAN Y X, HE F Y, et al. Characteristic, hazard and iron recovery technology of red mud - Acritical review[J]. Journal of Hazardous Materials. 2021, 420: 126542. https://doi.org/10.1016/j.jhazmat.2021.126542.

    [31]

    刘东方, 刘文凯, 薛宝达, 等. 铝土矿尾矿合成莫来石的研究[J]. 矿业科学学报, 2016, 1(3): 256−260.

    LIU D F, LIU W K, XUE B D, et al. Study on synthesizing mullite with bauxite tailing[J]. Journal of Mining Science and Technology, 2016, 1(3): 256−260.

    [32]

    申献江, 马冬阳, 张梅, 等. 铝土矿尾矿除杂及合成刚玉-莫来石研究[J]. 耐火材料, 2015, 51(4): 256−259.

    SHEN X J, MA D Y, ZHANG M. et al. Synthesis of corundum- mullite composites from impurity-removed bauxite tailings[J]. Refractories, 2015, 51(4): 256−259.

    [33]

    杨会智, 陈昌平, 孙洪巍, 等. 铝土矿尾矿微晶玻璃研制[J]. 矿业研究与开发, 2007, 27(6): 48−49. doi: 10.3969/j.issn.1005-2763.2007.06.016

    YANG H Z, CHEN C P, SUN H W, et al. Study on preparation of glass-ceramics using bauxite tailings[J]. Mining Research and Development, 2007, 27(6): 48−49. doi: 10.3969/j.issn.1005-2763.2007.06.016

    [34]

    李志新, 马先伟, 牛季收, 等. 铝矾土尾矿烧结透水砖的性能调控[J]. 河南城建学院学报, 2021, 30(1): 60−65.

    LI Z X, MA X W, NIU J S, et al. Performances control of sintered permeable bricks prepared with bauxite tailings[J]. Journal of Henan University of Urban Construction, 2021, 30(1): 60−65.

    [35]

    伍世衍. 利用低品位铝土矿制备低烧高强硅铝质陶瓷的研究[D]. 广州: 华南理工大学: 2014.

    WU S Y. Preparation of low-fired high-strength silica-alumina ceramics using low-grade bauxite[D]. Guangzhou: South China University of Technology: 2014.

    [36]

    李悦. 利用铝矾土尾矿制备过滤用多孔陶瓷[J]. 轻金属, 2016(3): 9−12.

    LI Y. Production of porous ceramic for filtration by using bauxite tailings[J]. Light Metals, 2016(3): 9−12.

    [37]

    刘三军, 刘永, 李向阳, 等. 用铝土矿选矿尾矿制备聚合氯化铝及污水处理试验研究[J]. 湿法冶金, 2020, 39(6): 539−542.

    LIU S J, LIU Y, LI X Y, et al. Preparation of polyaluminum chloride using bauxite tailings and its application in wastewater treatment[J]. Hydrometallurgy of China, 2020, 39(6): 539−542.

    [38]

    王振东, 张梅, 郭敏. 铝土矿尾矿制备4A分子筛的研究[J]. 中国稀土学报, 2012, 30: 472−476.

    WANG Z D, ZHANG M, GUO M. Synthesis and characterization of zeolite 4A from bauxite tailings[J]. Journal of Chinese society of RARE earths, 2012, 30: 472−476.

    [39]

    谭俊华, 史熙亮, 朱开金, 等. 利用低品位铝矾土和铸造废砂制备高贝利特硫铝酸盐水泥的研究[J]. 硅酸盐通报, 2017, 36(12): 4284−4290+4301.

    TAN J H, SHI X L, ZHU K J, et al. Preparation of high belite sulphoaluminate cement by low grade bauxite and foundry waste sand[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4284−4290+4301.

    [40]

    姚丕强, 俞为民, 张学文, 等. 低品位铝矾土配料煅烧高性能贝利特硫铝酸盐水泥熟料的工业试验[J]. 水泥, 2017(3): 1−5.

    YAO P Q, YU W M, ZHANG X W, et al. Industrial testing of low grade bauxite batch calcined high performance belite sulfate cement clinker[J]. Cement, 2017(3): 1−5.

    [41]

    LIU Y T, QIN Z H, CHEN B. Experimental research on magnesium phosphate cements modified byred mud[J]. Construction and Building Materials, 2020, 231: 117−131.

    [42]

    YE N, YANG J K, LIANG S, et al. Synthesis and strength optimization of one-part geopolymer based on red mud[J]. Construction and Building Materials, 2016, 111: 317−325. doi: 10.1016/j.conbuildmat.2016.02.099

    [43]

    刘俊霞, 李忠育, 张茂亮, 等. 赤泥地聚物水泥力学性能和聚合机理[J]. 建筑材料学报, 2022, 25(2): 178−183. doi: 10.3969/j.issn.1007-9629.2022.02.010

    LIU J X, LI Z Y, ZHANG M L, et al. Mechanical property and polymerization mechanism of red mud geopolymer cement[J]. Journal of Building Materials, 2022, 25(2): 178−183. doi: 10.3969/j.issn.1007-9629.2022.02.010

    [44]

    ZENG H, LYU F, SUN W, et al. Progress on the industrial applications of red mud with a focus on China[J]. Minerals, 2020, 10(9): 773. doi: 10.3390/min10090773

    [45]

    张雪, 王重庆, 曹亦俊. 赤泥固废土壤化修复研究进展[J]. 有色金属(冶炼部分), 2021(3): 84−92.

    ZHANG X, WANG Z Q, CAO Y J. Research progress on soilification of red mud solid waste[J]. Nonferrous Metals (Extractive Metallurgy), 2021(3): 84−92.

    [46]

    WANG L, HU G G, LYU F, et al. Application of red mud in wastewater treatment[J]. Minerals, 2019(9): 281. doi: 10.3390/min9050281

    [47]

    PULFORD I D, HARGREAVES J S, DURISOVÁ J, et al. Carbonised red mud-A new water treatment product made from a waste material[J]. Journal of Environmental Management, 2012, 100: 59−64.

    [48]

    VISHWAJEET S. Y, MURARI P, JEESHAN K, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of Hazardous Materials, 2010, 176: 1044−1050. doi: 10.1016/j.jhazmat.2009.11.146

    [49]

    RAMESH C S, RAJ K P, BANKIM C R. Neutralization of red mud using CO2 sequestration cycle[J]. Journal of Hazardous Materials, 2010, 179: 28−34. doi: 10.1016/j.jhazmat.2010.02.052

    [50]

    曹瑞雪, 康泽双, 刘万超, 等. 赤泥吸收矿化CO2技术研究[J]. 有色金属(冶炼部分), 2022(4): 57−60.

    CAO R X, KANG Z S, LIU W C, et al. Absorption and mineralization of CO2 with red mud[J]. Nonferrous Metals (Extractive Metallurgy), 2022(4): 57−60.

  • 加载中

(3)

计量
  • 文章访问数:  87
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2022-08-23
刊出日期:  2022-12-26

目录