改性D201树脂从钼精矿氧压浸出液中分离回收铼(Ⅶ)的研究

傅中乔, 侯艳蕊, 黄家豪, 程德, 李光辉. 改性D201树脂从钼精矿氧压浸出液中分离回收铼(Ⅶ)的研究[J]. 矿产保护与利用, 2022, 42(6): 115-122. doi: 10.13779/j.cnki.issn1001-0076.2022.06.015
引用本文: 傅中乔, 侯艳蕊, 黄家豪, 程德, 李光辉. 改性D201树脂从钼精矿氧压浸出液中分离回收铼(Ⅶ)的研究[J]. 矿产保护与利用, 2022, 42(6): 115-122. doi: 10.13779/j.cnki.issn1001-0076.2022.06.015
FU Zhongqiao, HOU Yanrui, HUANG Jiahao, CHENG De, LI Guanghui. Study on the Separation and Recovery of Re(Ⅶ) from Molybdenum Concentrate Oxygen-pressure Leaching Solution by D201 Resin[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 115-122. doi: 10.13779/j.cnki.issn1001-0076.2022.06.015
Citation: FU Zhongqiao, HOU Yanrui, HUANG Jiahao, CHENG De, LI Guanghui. Study on the Separation and Recovery of Re(Ⅶ) from Molybdenum Concentrate Oxygen-pressure Leaching Solution by D201 Resin[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 115-122. doi: 10.13779/j.cnki.issn1001-0076.2022.06.015

改性D201树脂从钼精矿氧压浸出液中分离回收铼(Ⅶ)的研究

  • 基金项目: 国家自然科学基金项目 (51874355)
详细信息
    作者简介: 傅中乔(1995—),女,河南南阳人,硕士,主要从事复杂矿物综合利用研究,E-mail:csufzq@163.com
    通讯作者: 李光辉(1972—),男,湖南益阳人,教授,主要从事矿产资源高效清洁利用,E-mail:liguanghuigroup@outlook.com
  • 中图分类号: TF841.8;TD98

Study on the Separation and Recovery of Re(Ⅶ) from Molybdenum Concentrate Oxygen-pressure Leaching Solution by D201 Resin

More Information
  • 为开发一种低成本、环保型离子交换工艺回收铼,基于钼铼离子在酸性体系中离子形态的差异,采用改性D201阴离子交换树脂从钼精矿氧压浸出液中分离回收铼(Ⅶ)。考察了初始pH值、转速、树脂用量、吸附温度、吸附时间对铼回收效果的影响,并利用Raman、FTIR和SEM-EDS对浸出液和改性树脂进行表征分析。结果表明:在初始pH=1.70、转速300 r/min、吸附温度20 ℃、吸附时间60 min、树脂用量0.002 g/mL的条件下,铼的吸附率达98.81%,而钼、铁、铈的吸附率分别仅为0.44%、1.04%、1.25%。铼与钼、铁、铈的最大分离系数分别为262.25、104.60、89.02。实际氧压浸出液中钼、铁、铈主要以MoO22+、Fe3+和Ce3+等阳离子形态存在,铼以ReO4-阴离子形态存在,改性D201阴离子交换树脂通过静电吸引和螯合作用选择性吸附铼离子,实现铼与钼、铁、铈的有效分离。

  • 加载中
  • 图 1  D201树脂改性机理

    Figure 1. 

    图 2  初始pH值对铼吸附率的影响

    Figure 2. 

    图 3  转速和吸附时间对铼吸附率的影响

    Figure 3. 

    图 4  树脂用量对铼吸附率的影响

    Figure 4. 

    图 5  吸附温度对铼吸附率的影响

    Figure 5. 

    图 6  吸附时间对铼吸附率的影响

    Figure 6. 

    图 7  氧压浸出液的拉曼红外谱图

    Figure 7. 

    图 8  D201树脂改性前后以及吸附后的FTIR红外光谱图

    Figure 8. 

    图 9  D201树脂吸附铼的机理

    Figure 9. 

    图 10  吸附前(a)与吸附后(b)D201树脂的SEM图像

    Figure 10. 

    图 11  D201树脂的SEM图像(a)和元素图谱(b)(c)(d)(e)(f),吸附上Re(Ⅶ)的D201树脂的SEM图像(g)和Re的元素图谱(h)(i)

    Figure 11. 

    图 12  不同元素的吸附率

    Figure 12. 

    图 13  铼与有价元素的分离系数

    Figure 13. 

    表 1  浸出液的主要化学成分

    Table 1.  Main chemical compositions of the leach solution /(mg·L−1)

    元素MoReFeCeSO42-
    浓度77119.11770381050
    下载: 导出CSV

    表 2  不同pH条件下的钼酸盐种类

    Table 2.  Molybdate species at different pH conditions

    pH钼酸盐形式
    0~1MoO22+、H6MoO28+、H3MoO4+
    1~2MoO22+、H3Mo7O243−、H2Mo7O244−
    2~3H3Mo7O243−、H2Mo7O244−、HMo7O245−
    3~4H3Mo7O243−、H2Mo7O244−、HMo7O245−、Mo8O264−
    4~5H3Mo7O243−、H2Mo7O244−、HMo7O245−
    5~6H2Mo7O244−、HMo7O245−、Mo7O246−
    >6MoO42−
    下载: 导出CSV
  • [1]

    方健, 吴丹丹, 文书明, 等. 稀散金属铼资源综合回收利用研究进展[J]. 矿产保护与利用, 2020, 40(5): 62−69. doi: 10.13779/j.cnki.issn1001-0076.2020.05.008

    FANG J, WU D D, WEN S M, et al. Research progress on comprehensive recovery and utilization of rhenium resources[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 62−69. doi: 10.13779/j.cnki.issn1001-0076.2020.05.008

    [2]

    郭娟, 崔荣国, 王卉, 等. 世界铼资源供需现状及展望[J]. 国土资源情报, 2020(10): 67−74.

    GUO J, CUI R G, WANG H, et al. Supply and demand situation and outlook of global rhenium resources[J]. Land and Resources Information, 2020(10): 67−74.

    [3]

    陈喜峰, 陈秀法, 李娜, 等. 全球铼矿资源分布特征与开发利用形势及启示[J]. 中国矿业, 2019, 28(5): 7−12.

    CHEN X F, CHEN X F, LI N, et al. Global rhenium ore resource distribution characteristics and development and utilization situation and inspiration[J]. China Mining, 2019, 28(5): 7−12.

    [4]

    王海勇, 何亮. 浅谈铼的富集规律和综合利用[J]. 中国资源综合利用, 2018, 36(11): 70−72.

    WANG H Y, HE L. Briefly discuss the enrichment law and comprehensive utilization of rhenium[J]. China Resource Comprehensive Utilization, 2018, 36(11): 70−72.

    [5]

    刘红召, 王威, 曹耀华, 等. 世界铼资源及市场现状[J]. 矿产保护与利用, 2014(5): 55−58. doi: 10.13779/j.cnki.issn1001-0076.2014.05.014

    LIU H Z, WANG W, CAO Y H, et al. World rhenium resources and market status[J]. Conservation and Utilization of Mineral Resources, 2014(5): 55−58. doi: 10.13779/j.cnki.issn1001-0076.2014.05.014

    [6]

    黄翀, 陈其慎, 李颖, 等. 2030年全球及中国铼资源需求刍议[J]. 中国矿业, 2014, 23(9): 9−11. doi: 10.3969/j.issn.1004-4051.2014.09.003

    HUANG C, CHEN Q S, LI Y, et al. Rumination on global and Chinese rhenium resource demand in 2030[J]. China Mining, 2014, 23(9): 9−11. doi: 10.3969/j.issn.1004-4051.2014.09.003

    [7]

    吴贤, 李来平, 张文钲, 等. 铼的性质及铼资源分布[J]. 矿业快报, 2008(11): 67−69.

    WU X, LI L P, ZHANG W Z, et al. The nature of rhenium and the distribution of rhenium resources[J]. Modern Mine, 2008(11): 67−69.

    [8]

    HUANG Y, ZHANG B, LIU B, et al. Clean and deep separation of molybdenum and rhenium fromultra-low concentration solutions via vapidly stepwise selective coagulation and flocculation precipitation[J]. Separation and Purification Technology, 2021, 267: 118632.

    [9]

    HONG T, LIU M, MA J, et al. Selective recovery of rhenium from industrial leach solutions by synergistic solvent extraction[J]. Separation and Purification Technology, 2020, 236: 116281.

    [10]

    SHEN L, TESFAYE F, LI X, et al. Review of rhenium extraction and recycling technologies from primary and secondary resources[J]. Minerals Engineering, 2021, 161: 106719.

    [11]

    ZAGORODNYAYA A N, ABISHEVA Z S, SHARIPOVA A S, et al. Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions[J]. Hydrometallurgy, 2013, 131/132: 127−132.

    [12]

    刘伟, 丁留亮, 郭明宜, 等. 钼冶金中铼的综合提取研究进展[J]. 稀有金属与硬质合金, 2017, 45(5): 1−6.

    LIU W, DING L L, GUO M Y, et al. Research progress of comprehensive extraction of rhenium in molybdenum metallurgy[J]. Rare Metal and Cemented Carbides, 2017, 45(5): 1−6.

    [13]

    李洪桂. 离子交换技术在钼冶金中的应用[J]. 中国钼业, 1994(3): 1−7.

    LI H G. Application of ion exchange technology in molybdenum metallurgy[J]. China Molybdenum Industry, 1994(3): 1−7.

    [14]

    HUA R, ZHANG Y, LIU F, et al. Study of the ability of 2-AMPR resin to separate Re(Ⅶ) from U(Ⅵ) in acidic aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(1): 261−271.

    [15]

    XIONG C, YAO C, WU X. Adsorption of rhenium(Ⅶ) on 4-amino-1,2,4-triazole resin[J]. Hydrometallurgy, 2008, 90(2/3/4): 221−226.

    [16]

    AHMADI M. Breakthrough curves for adsorption and elution of rhenium in a column ion exchange system[J]. Hydrometallurgy, 2007, 85(1): 17−23.

    [17]

    LESZCZYNSKA-SEJDA G, BENKE A, CHMIELARZ S, et al. Synthesis of perrhenic acid using ion exchange method[J]. Hydrometallurgy, 2007, 89(3/4): 289−296.

    [18]

    付云枫.氧压水浸法分解辉钼矿提取分离钼硫资源的应用基础研究[D].北京:中国科学院大学(中国科学院过程工程研究所), 2018.

    FU Y F. Basic research on the application of oxygen-pressure water leaching method to decompose pyromorphite to extract and separate molybdenum and sulfur resources[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2018.

    [19]

    JIA M, CUI H M, JIN W Q, et al. Adsorption and separation of rhenium(Ⅶ) using N‐methylimidazolium functionalized strong basic anion exchange resin[J]. Journal of Chemical Technology & Biotechnology, 2012.

    [20]

    邱朝辉.钼、铼的萃取与离子交换分离研究[D].长沙:中南大学,2010.

    QIU Z H. Extraction and ion exchange separation study of molybdenum and rhenium[D]. Changsha: Central South University, 2010.

    [21]

    CYGANOWSKI P, CIERLIK A, LESNIEWICZ A, et al. Separation of Re(Ⅶ) from Mo(Ⅵ) by anion exchange resins synthesized using microwave heat[J]. Hydrometallurgy, 2019, 185: 12−22.

    [22]

    HUANG Y, ZHANG B, LIU B, et al. Clean and deep separation of molybdenum and rhenium from ultra-low concentration solutions via vapidly stepwise selective coagulation and flocculation precipitation[J]. Separation and Purification Technology, 2021, 267(8): 118632.

    [23]

    FU Y F, XIAO Q G, GAO Y Y, et al. Pressure aqueous oxidation of molybdenite concentrate with oxygen[J]. Hydrometallurgy, 2017, 174: 131-139.

  • 加载中

(13)

(2)

计量
  • 文章访问数:  118
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-06-07
刊出日期:  2022-12-26

目录