湿式细磨技术研究进展

孙小旭, 王芏卜, 姚建超, 何建成. 湿式细磨技术研究进展[J]. 矿产保护与利用, 2022, 42(6): 174-178. doi: 10.13779/j.cnki.issn1001-0076.2022.06.019
引用本文: 孙小旭, 王芏卜, 姚建超, 何建成. 湿式细磨技术研究进展[J]. 矿产保护与利用, 2022, 42(6): 174-178. doi: 10.13779/j.cnki.issn1001-0076.2022.06.019
SUN Xiaoxu, WANG Dubo, YAO Jianchao, HE Jiancheng. Research Progress of Wet Fine Grinding Technology[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 174-178. doi: 10.13779/j.cnki.issn1001-0076.2022.06.019
Citation: SUN Xiaoxu, WANG Dubo, YAO Jianchao, HE Jiancheng. Research Progress of Wet Fine Grinding Technology[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 174-178. doi: 10.13779/j.cnki.issn1001-0076.2022.06.019

湿式细磨技术研究进展

详细信息
    作者简介: 孙小旭(1989—),男,河北易县人,硕士,高级工程师,主要从事细磨技术装备研究与推广
  • 中图分类号: TD921+.4

Research Progress of Wet Fine Grinding Technology

  • 在介绍湿式细磨技术在矿物加工行业细磨作业流程中重要作用的基础上,重点对湿式细磨中的能量耗散和研磨介质运动状态的理论进行了分析,对基于CFD、DEM、PEPT的模拟仿真过程及结果进行了探讨。在简述湿式细磨技术与装备的应用进展的基础上,总结了典型湿式细磨技术与装备的结构研发、技术优化和应用进展,以期能为湿式细磨技术和装备的研究、推广提供帮助,为实现矿物加工行业的节能高效细磨奠定基础。

  • 加载中
  • 图 1  内部能量分布

    Figure 1. 

  • [1]

    卢世杰, 刘佳鹏, 何建成, 等. 几种典型搅拌磨机磨矿机理的研究进展[J]. 有色金属(选矿部分), 2017(z1): 13−21.

    LU S J, LIU J P, HE J C, et al. Typical wet stirring fine grinding technology and application progress[J]. Nonferrous Metals (Mineral Processing Section), 2017(z1): 13−21.

    [2]

    卢世杰, 孙小旭, 何建成, 等. 典型湿式搅拌细磨技术与应用进展[J]. 矿产保护与利用, 2020, 40(1): 159−165. doi: 10.13779/j.cnki.issn1001-0076.2020.01.019

    LU S J, SUN X X, HE J C, et al. Typical wet stirring fine grinding technology and application progress[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 159−165. doi: 10.13779/j.cnki.issn1001-0076.2020.01.019

    [3]

    JANKOVIC A. Mathematical modelling of stirred mills[D]. Australia, Queensland: University of Queensland, 1999.

    [4]

    李椿楠, 李国峰, 刘立伟, 等. 搅拌磨机的研究及应用现状[J]. 矿产综合利用, 2021(4): 110−117. doi: 10.3969/j.issn.1000-6532.2021.04.017

    LI C N, LI G F, LIU L W, et al. Research and application status of stirring mill[J]. Maltipurpose Utilization of Mineral Resources, 2021(4): 110−117. doi: 10.3969/j.issn.1000-6532.2021.04.017

    [5]

    SHI F, MORRISON R, CERVELLIN A, et al. Comparison of energy efficiency between ball mills and stirred mills in coarse grinding[J]. Minerals Enginnering, 2009, 22(7): 673−680.

    [6]

    JANKOVIC A. Variables affecting the fine grinding of minerals using stirred mills[J]. Minerals Engineering, 2003, 16(4): 337−345. doi: 10.1016/S0892-6875(03)00007-4

    [7]

    SCHONERT K. Advances in comminution fundamental, and impacts on technology[A]. ⅩⅦ International Mineral Processing Congress, Dresden, 1991, 9(1): 1-21.

    [8]

    STEHR N, SCHWEDES J. Investigation of the grinding behaviour of a stirred ball mill[J]. German Chemical Engineering, 1983, 6(6): 337−343.

    [9]

    STEHR N. Recent developments in stirred ball milling[J]. International Journal Mineral Processing, 1988, 22(1): 431−444.

    [10]

    KWADE A. Wet comminution in stirred media mills-research and its practical application[J]. Powder Technology, 1999, 105(1/2/3): 14−20.

    [11]

    KWADE A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number[J]. Powder Technology, 1999, 105(1/2/3): 382−388.

    [12]

    KWADE A, SCHWEDES J. Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills[J]. Powder Technology, 2002, 122(2/3): 109−121.

    [13]

    BECKER M, KWADE A, SCHWEDES J. Stress intensity in stirred media mills and its effect on specific energy requirement[J]. Int. J. Miner. Process, 2001, 61(3): 189−208. doi: 10.1016/S0301-7516(00)00037-5

    [14]

    JANKOVIC A. Media stress intensity analysis for vertical stirred mills[J]. Minerals Engineering, 2001, 14(10): 1177−1186. doi: 10.1016/S0892-6875(01)00135-2

    [15]

    COOKER B, NEDDERMAN R M. Circulation and power consumption in helical ribbon powder agitators[J]. Powder Technology, 1987, 52(2): 117−129. doi: 10.1016/0032-5910(87)80142-0

    [16]

    RYDIN R W, MAURICE D, COURTNEY T H. Milling dynamics: part 1. attritor dynamics: results of a cinematographic study[J]. Metallurgical Transactions, 1993, 24(1): 175−185. doi: 10.1007/BF02669614

    [17]

    DUFFY, S. M. Investigation into the performance characteristics of tower mills[D]. Australia, Queensland: University of Queensland, 1994.

    [18]

    STENDER H H, KWADE A, SCHWEDES J. Stress energy distribution in different stirred media mill geometries[J]. Int. J. Miner. Process, 2004, 74: 103−117. doi: 10.1016/j.minpro.2004.07.003

    [19]

    JANKOVIC A, MORRELL S. Power modelling of stirred mills[C]∥Proceedings of the Second UBC-MCGILL BI-Annual International Symposium on Fundamentals of Mineral Processing and the Environment, Sudbury, Ontario, Canada, 1997: 195-208.

    [20]

    BLECHER L, KWADE A, SCHWEDES J. Motion and stress intensity of grinding beads in a stirred media mill. Part 1: Energy density distribution and motion of single grinding beads[J]. Powder Technology, 1996, 86(1): 59−68. doi: 10.1016/0032-5910(95)03038-7

    [21]

    KWADE A, BLECHER L, SCHWEDES J. Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution[J]. Powder Technology, 1996, 86(1): 69−76. doi: 10.1016/0032-5910(95)03039-5

    [22]

    JAYASUNDARA C T, YANG R Y, GUO B Y, et al. Effect of slurry properties on particle motion in IsaMills[J]. Minerals Engineering, 2009(11): 886−892.

    [23]

    JAYASUNDARA C T, YANG R Y, YU A B, et al. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill[J]. Int. J. Miner. Process, 2010, 96(1): 27−35.

    [24]

    JAYASUNDARA C T, YANG R Y, YU A B. Effect of the size of media on grinding performance in stirred mills[J]. Minerals Engineering, 2012, 33: 66−71. doi: 10.1016/j.mineng.2011.10.012

    [25]

    SINNOTT M, CLEARY P W, MORRISON R D. Slurry flow in a tower mill[J]. Minerals Engineering, 2011, 24(2): 152−159. doi: 10.1016/j.mineng.2010.11.002

    [26]

    SINNOTT M D, CLEARY P W, MORRISON R D. Is media shape important for grinding performance in stirred mills[J]. Minerals Engineering, 2011, 24(2): 138−151. doi: 10.1016/j.mineng.2010.10.016

    [27]

    R. W. BARLEY, J. CONWAY-BAKER, R. D. Pascoe, et al. Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT) Part Ⅱ[J]. Minerals Engineering, 2004, 17(11): 1179−1187.

    [28]

    J. CONWAY-BAKER, R. W. BARLEY, R. A. Williams, et al. Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT)[J]. Minerals Engineering, 2002, 15(1): 53−59.

    [29]

    孙小旭, 卢世杰, 周宏喜, 等. 细磨用KLM立磨机选型试验研究[J]. 铜业工程, 2018(6): 73−76. doi: 10.3969/j.issn.1009-3842.2018.06.021

    SUN X X, LU S J, ZHOU H X, et al. Experimental study on selection of KLM vertical mill for fine grinding[J]. Copper engineering, 2018(6): 73−76. doi: 10.3969/j.issn.1009-3842.2018.06.021

    [30]

    孙小旭. GJM型棒式搅拌磨机工业试验研究[J]. 有色金属(选矿部分), 2017(3): 66−69.

    SUN X X. Industrial test research on GJM rod stirred mill[J]. Nonferrous Metals(mineral processing section), 2017(3): 66−69.

    [31]

    何建成, 孙小旭, 姚建超, 等石墨高效再磨擦洗技术及工业试验研究[J]有色金属(选矿部分), 2018(2) : 78-81.

    HE J C, SUN X X, YAO J C, et al. Study on High efficiency regrinding and washing technology of graphite and industrial test[J]. Nonferrous Metals(mineral processing section), 2018(2) : 78-81.

  • 加载中

(1)

计量
  • 文章访问数:  106
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2022-05-26
录用日期:  2022-05-26
刊出日期:  2022-12-26

目录