纳米铁粉—过硫酸铵氧化预处理对某微细浸染型金矿非氰浸出的影响及量子化学计算

李宜昌, 唐云, 李国辉, 李帅, 代文治. 纳米铁粉—过硫酸铵氧化预处理对某微细浸染型金矿非氰浸出的影响及量子化学计算[J]. 矿产保护与利用, 2023, 43(1): 50-56. doi: 10.13779/j.cnki.issn1001-0076.2022.07.014
引用本文: 李宜昌, 唐云, 李国辉, 李帅, 代文治. 纳米铁粉—过硫酸铵氧化预处理对某微细浸染型金矿非氰浸出的影响及量子化学计算[J]. 矿产保护与利用, 2023, 43(1): 50-56. doi: 10.13779/j.cnki.issn1001-0076.2022.07.014
LI Yichang, TANG Yun, LI Guohui, LI Shuai, DAI Wenzhi. Effect of Nano Iron Powder-ammonium Persulfate Oxidation Pretreatment on Non-Cyanide Leaching of a Fine Disseminated Gold Ore and Quantum Chemical Calculation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 50-56. doi: 10.13779/j.cnki.issn1001-0076.2022.07.014
Citation: LI Yichang, TANG Yun, LI Guohui, LI Shuai, DAI Wenzhi. Effect of Nano Iron Powder-ammonium Persulfate Oxidation Pretreatment on Non-Cyanide Leaching of a Fine Disseminated Gold Ore and Quantum Chemical Calculation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 50-56. doi: 10.13779/j.cnki.issn1001-0076.2022.07.014

纳米铁粉—过硫酸铵氧化预处理对某微细浸染型金矿非氰浸出的影响及量子化学计算

  • 基金项目: 国家自然科学基金项目(51864010);贵州省省级科技计划项目(黔科合基础 [2017]1404,黔科合平台人才[2018]5781)
详细信息
    作者简介: 李宜昌( 1997—),男,硕士研究生,研究方向:矿产资源综合利用及难选矿石分选
    通讯作者: 唐云( 1971—) ,女,教授,博士研究生导师,E-mail:ytang2@gzu.edu.cn
  • 中图分类号: TD953+.1;TD925+.6;TF803.2

Effect of Nano Iron Powder-ammonium Persulfate Oxidation Pretreatment on Non-Cyanide Leaching of a Fine Disseminated Gold Ore and Quantum Chemical Calculation

More Information
  • 以微细浸染型原生金矿石为研究对象,采用纳米铁粉(nZVI)-/过硫酸铵(APS)体系氧化预处理载金黄铁矿后加入非氰浸金剂,并运用量子化学计算nZVI-APS体系产生的中间体 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_{4}^-\cdot $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175138.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175134.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175128.png'/ > 强化氧化黄铁矿的反应路径。试验结果表明:在APS用量4 kg/t、nZVI用量4 kg/t、预处理时间4 h、NaOH用量10 kg/t、浸金剂金蝉用量10 kg/t和浸出时间2 h条件下,获得金的浸出率为87.93%。量子化学计算结果表明:在nZVI-APS体系中,黄铁矿的氧化预处理反应路径为第一过渡态(TS1)→中间体(IC)→第二过渡态(TS2),其中TS1是该体系产生 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_{4}^-\cdot $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175138.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175134.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175128.png'/ > 的速控步;Fe2+与APS中的S原子、O原子和O桥键均产生吸附,而O桥键上的吸附成键最为稳定; < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_{4}^-\cdot $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175138.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175134.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2022-08-0016_Z-20230331175128.png'/ > 均能氧化黄铁矿中的Fe和S,其中Fe是主要的反应活性点。

  • 加载中
  • 图 1  APS用量对金浸出率的影响

    Figure 1. 

    图 2  nZVI用量对金浸出率的影响

    Figure 2. 

    图 3  NaOH用量对金浸出率的影响

    Figure 3. 

    图 4  浸出剂用量对金浸出率的影响

    Figure 4. 

    图 5  预处理时间对金浸出率的影响

    Figure 5. 

    图 6  浸出时间对金浸出率的影响

    Figure 6. 

    图 7  APS与Fe2+模型

    Figure 7. 

    图 8  Fe2+在APS不同点位吸附模型

    Figure 8. 

    图 9  APS的O桥键吸附Fe2+反应路径

    Figure 9. 

    图 10  ${\rm{SO}}_{4}^-\cdot $−黄铁矿吸附模型:(a)S吸附Fe;(b)O吸附S;(c)O吸附Fe

    Figure 10. 

    表 1  不同吸附点位吸附能计算结果

    Table 1.  Calculation results of adsorption energy at different adsorption sites /eV

    能量S点位O1点位O2点位O3点位O桥键点位
    EAPS-Fe2+−87.37−92.14−91.72−89.26−95.41
    Eads0.59−4.18−3.76−1.29−7.45
    下载: 导出CSV

    表 2  不同吸附点位APS构型的键长

    Table 2.  Bond lengths (Å) of APS configurations at different adsorption sites

    S点位O1点位O2点位O3点位O桥键点位
    S1-O21.4881.5081.5081.5081.508
    S1-O41.5751.4921.6161.6161.492
    S8-O91.3731.3341.3341.3731.334
    O5-O71.4801.4801.4801.4801.345
    O6-N121.2461.1851.1851.2131.185
    N12-H131.2281.2281.2281.2281.228
    Fe2+-吸附点位1.6831.8761.7521.9932.082
    下载: 导出CSV

    表 3  黄铁矿晶格参数

    Table 3.  Pyrite lattice parameters

    a=b=cα=β=γ
    5.4281 Å90°
    下载: 导出CSV

    表 4  黄铁矿原子位置

    Table 4.  Pyrite atomic positions

    AtomXYZ
    Fe001
    S0.385040.385040.38504
    下载: 导出CSV
  • [1]

    中国黄金年鉴: 我国黄金资源量连续15年增长[J]. 黄金科学技术, 2021, 29(4): 611.

    China Gold Yearbook: China's gold resources have increased for 15 consecutive years[J]. Gold Science and Technology, 2021, 29(4): 611.

    [2]

    李夕兵, 周健, 黄麟淇, 等. 中国黄金矿山开采技术回顾与展望[J]. 黄金, 2020, 41(9): 41−50.

    LI X B, ZHOU J, HUANG L Q, et al. Review and prospect of gold mining technology in China[J]. Gold, 2020, 41(9): 41−50.

    [3]

    牛翠祎, 刘烊, 张岱. 中国金矿成矿地质特征、预测模型及资源潜力[J]. 地学前缘, 2018, 25(3): 1−12.

    NIU C W, LIU Y, ZHANG D. Metallogenic geological features, prediction models and resources potential of gold deposits in China[J]. Earth Science Frontiers, 2018, 25(3): 1−12.

    [4]

    牛会群, 佟琳琳, 衷水平, 等. 卡林型金矿碳质物特征及其去碳方法研究现状[J]. 有色金属(冶炼部分), 2019(6): 33−39.

    NIU H Q, TONG L L, ZHONG S P, et al. Research status on carbonaceous matter characteristic and decarbonization of carlin-type gold ore[J]. Nonferrous Metals (Extractive Metallurgy), 2019(6): 33−39.

    [5]

    崔毅琦, 陈海亮, 董鹏, 等. 卡林型金矿预处理技术研究现状[J]. 黄金, 2014, 35(10): 61−63. doi: 10.11792/hj20141014

    CUI Y Q, CHEN H L, DONG P, et al. Research on the status of pretreatment techniques for carlin-type gold deposits[J]. Gold, 2014, 35(10): 61−63. doi: 10.11792/hj20141014

    [6]

    张博, 李诺, 陈衍景. 热液矿床金的赋存状态及研究方法[J]. 地学前缘, 2018, 25(5): 251−265.

    ZHANG B, LI N, CHEN Y J. Occurrence state of gold in hydrothermal deposits and related research methods[J]. Earth Science Frontiers, 2018, 25(5): 251−265.

    [7]

    刘一浩, 薛春纪, 赵云, 等. 我国热液金矿中黄铁矿的载金性研究[J]. 现代地质, 2020, 34(1): 1−12.

    LIU Y H, XUE C J, ZHAO Y, et al. Research on auriferous pyrite in hydrothermal gold deposits, China[J]. Geoscience, 2020, 34(1): 1−12.

    [8]

    董再蒸, 韩跃新, 高鹏. 卡林型金矿化学氧化预处理技术研究现状[J]. 金属矿山, 2015(12): 92−97. doi: 10.3969/j.issn.1001-1250.2015.12.021

    DONG Z Z, HAN Y X, GAO P. Research status on chemical pre-oxidation for carlin-type gold ore[J]. Metal Mine, 2015(12): 92−97. doi: 10.3969/j.issn.1001-1250.2015.12.021

    [9]

    吴冰. 复杂难处理金矿石预处理工艺研究现状及进展[J]. 黄金, 2020, 41(5): 65−72. doi: 10.11792/hj20200513

    WU B. Current status and progress of the research on complex refractory gold ore pretreatment technology[J]. Gold, 2020, 41(5): 65−72. doi: 10.11792/hj20200513

    [10]

    KOOHESTANI B, DARBAN A K, MOKHTARI P, et al. Influence of hydrofluoric acid leaching and roasting on mineralogical phase transformation of pyrite in sulfidic mine tailings[J]. Minerals, 2020, 10(6): 10060513.

    [11]

    殷书岩, 赵鹏飞, 陆业大, 等. 加压氧化技术在难处理金矿上的应用[J]. 中国有色冶金, 2018, 47(1): 28−30.

    YIN S Y, ZHAO P F, LU Y D, et al. Application of POX technology on refractory gold ores[J]. China Nonferrous Metallurgy, 2018, 47(1): 28−30.

    [12]

    YIN L, YANG H Y, LI X, et al. Changes of microbial diversity during pyrite bioleaching[J]. Journal of Central South University, 2020, 27(5): 1477−1483. doi: 10.1007/s11771-020-4383-1

    [13]

    CHAN T, COLLINS M, DENNETT J, et al. Pilot plant pressure oxidation of refractory gold-silver concentrate from Eldorado Gold Corporation's Certej Project in Romania[J]. Canadian Metallurgical Quarterly, 2015, 54(3): 252−260. doi: 10.1179/1879139515Y.0000000018

    [14]

    AMANKWAH R K, OFORI-SARPONG G. Microwave roasting of flash flotation concentrate containing pyrite, arsenopyrite and carbonaceous matter[J]. Minerals Engineering, 2020, 151: 106312. doi: 10.1016/j.mineng.2020.106312

    [15]

    MARCHEVSKY N, BARROSO QUIROGA M M, GIAVENO A, et al. Microbial oxidation of refractory gold sulfide concentrate by a native consortium[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1143−1149. doi: 10.1016/S1003-6326(17)60133-X

    [16]

    马方通, 高利坤, 董方, 等. 难处理金矿预处理及强化氰化技术研究现状及进展[J]. 黄金, 2016, 37(4): 51−55. doi: 10.11792/hj20160412

    MA F T, GAO L K, DONG F, et al. Pretreatment of refractory gold ores and current research status and progress of intensified cyanidation process[J]. Gold, 2016, 37(4): 51−55. doi: 10.11792/hj20160412

    [17]

    MA J, TANG Y, YANG D Q, et al. Kinetics of advanced oxidative leaching of pyrite in a potassium peroxy-disulphate solution[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2020, 120(2): 165−172.

    [18]

    TANG Y, LI G H, YANG Y, et al. Oxidation of gold-bearing pyrite by ammonium persulfate[J]. Journal of Sustainable Metallurgy, 2021, 7(3): 1280−1292. doi: 10.1007/s40831-021-00416-5

    [19]

    SILVA J C M, DOS SANTOS E C, HEINE T, et al. Oxidation mechanism of arsenopyrite in the presence of water[J]. Journal of Physical Chemistry C, 2017, 121(48): 26887−26894. doi: 10.1021/acs.jpcc.7b09706

    [20]

    JIN J Q, MILLER J D, DANG L X, et al. Effect of surface oxidation on interfacial water structure at a pyrite (100) surface as studied by molecular dynamics simulation[J]. International Journal of Mineral Processing, 2015, 139: 64−76. doi: 10.1016/j.minpro.2015.04.006

    [21]

    XIAN H Y, ZHU J X, TAN W, et al. The mechanism of defect induced hydroxylation on pyrite surfaces and implications for hydroxyl radical generation in prebiotic chemistry, Geochimica et Cosmochimica Acta, 2019, 244: 163- 172.

    [22]

    胡静文, 王艳红, 顾帼华, 等. 选矿废水的净化处理技术及机理研究进展[J]. 矿产保护与利用, 2021, 41(4): 35−42.

    HU J W, WANG Y H, GU J H, et al. Research progress on purification technology and mechanism of mineral processing wastewater[J]. Conservation and utilization of mineral resources, 2021, 41(4): 35−42.

    [23]

    占鹏, 孙微, 廖小龙, 等. Fe0活化氧化体系处理垃圾渗滤液实验研究[J]. 水处理技术, 2019, 45(12): 37−41.

    ZHAN P, SUN W, LIAO X L, et al. Experimental study on landfill leachate treatment by Fe0 activated oxidation system[J]. Technology of Water Treatment, 2019, 45(12): 37−41.

    [24]

    吕超飞, 党晓娥, 贠亚新等. 环保型“金蝉”浸出剂处理金精矿的试验研究[J]. 黄金, 2014, 35(5): 60−64. doi: 10.11792/hj20140515

    LV C F, DANG X E, YUN Y X, et al. Experimental research on the extraction of gold from the concentrates by environment-friendly Jinchan leaching agents[J]. Gold, 2014, 35(5): 60−64. doi: 10.11792/hj20140515

    [25]

    唐云, 杨典奇, 唐立靖, 等. 微细浸染型难选金矿两段预处理-非氰化浸出研究[J]. 矿冶工程, 2017, 37(1): 60−63. doi: 10.3969/j.issn.0253-6099.2017.01.017

    TANG Y, YANG D Q, TANG L J, et al. Experimental research on non-cyanide leaching of micro-disseminated gold ore with two-stage pretreatment[J]. Mining and Metallurgical Engineering, 2017, 37(1): 60−63. doi: 10.3969/j.issn.0253-6099.2017.01.017

  • 加载中

(10)

(4)

计量
  • 文章访问数:  125
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2022-08-19
刊出日期:  2023-02-15

目录