阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理

白阳, 崔万顺, 文伟翔, 安红运, 于福顺, 闫平科. 阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理[J]. 矿产保护与利用, 2023, 43(1): 44-49. doi: 10.13779/j.cnki.issn1001-0076.2023.01.005
引用本文: 白阳, 崔万顺, 文伟翔, 安红运, 于福顺, 闫平科. 阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理[J]. 矿产保护与利用, 2023, 43(1): 44-49. doi: 10.13779/j.cnki.issn1001-0076.2023.01.005
BAI Yang, CUI Wanshun, WEN Weixiang, AN Hongyun, YU Fushun, YAN Pingke. Synergistic Mechanism of Mixed Anionic/cationic Collectors at Gas-liquid Interface in Lepidolite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 44-49. doi: 10.13779/j.cnki.issn1001-0076.2023.01.005
Citation: BAI Yang, CUI Wanshun, WEN Weixiang, AN Hongyun, YU Fushun, YAN Pingke. Synergistic Mechanism of Mixed Anionic/cationic Collectors at Gas-liquid Interface in Lepidolite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 44-49. doi: 10.13779/j.cnki.issn1001-0076.2023.01.005

阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理

  • 基金项目: 国家自然科学基金项目( 51674137)
详细信息
    作者简介: 白阳(1992—),男,河南鹤壁人,博士,讲师,主要从事矿物资源综合利用的研究,E-mail:by9211@163.com
    通讯作者: 闫平科(1975—),男,陕西宝鸡人,博士,教授,主要从事矿物资源综合利用的研究,E-mail:yanpingke@126.com
  • 中图分类号: TD923+.13;TD955

Synergistic Mechanism of Mixed Anionic/cationic Collectors at Gas-liquid Interface in Lepidolite Flotation

More Information
  • 以某含Li2O 1.09%的锂云母矿石为研究对象,将三种阴离子捕收剂油酸钠(NaOl)、十二烷基磺酸钠(SDS)和环烷酸钠(NA)分别与阳离子捕收剂十二胺(DDA)进行复配,借助浮选试验、表面张力、泡沫物化性质测试及协同作用参数计算等手段,从气-液界面研究了阴/阳离子组合捕收剂在锂云母浮选中的协同作用机理。浮选结果表明,三种阴/阳离子组合捕收剂对锂云母的浮选效果均优于单一捕收剂,且当DDA与SDS摩尔比为1∶1时达到最佳浮选效果,精矿中Li2O品位和回收率分别为2.24%和61.88%。而此时浮选泡沫的稳定性达到最低,有利于锂云母的浮选,其浮选泡沫层的高度、半衰期和含水量分别为33 mm,86 s和48.72%。结合表面张力和协同作用参数计算结果可知,在阴/阳离子组合捕收剂体系中,由于正、负电荷相互吸引,致使阴离子捕收剂插入到DDA之间的空隙中,两种捕收剂通过静电力和碳链间的疏水缔合作用相互交织。而由于磺酸基较强的电负性,其降低DDA之间静电斥力的能力更强。相比DDA/NaOl和DDA/NA,DDA/SDS在气-液界面的饱和吸附值增加,捕收剂分子所占的平均最小面积减小,因而表现出更高的表面活性,展现出对锂云母更好的捕收能力及选择性。

  • 加载中
  • 图 1  捕收剂起泡能力及泡沫稳定性试验示意图

    Figure 1. 

    图 2  阴/阳离子组合捕收剂种类对锂云母浮选效果的影响(矿浆pH=7)

    Figure 2. 

    图 3  阴/阳离子组合捕收剂摩尔比对锂云母浮选品位(A)及回收率(B)的影响(矿浆pH=7)

    Figure 3. 

    图 4  捕收剂浓度与溶液表面张力的关系

    Figure 4. 

    表 1  锂云母原矿化学元素分析结果

    Table 1.  Chemical composition of lepidolite ore

    化学成分Li2OSiO2Al2O3Na2OK2OFe2O3MgOCaO其他
    含量/%1.0967.9517.371.633.120.550.283.043.34
    下载: 导出CSV

    表 2  锂云母原矿主要矿物组成及含量

    Table 2.  Main mineral composition and content of lepidolite ore

    矿物锂云母石英钾长石钠长石高岭石黄玉其他
    含量/%33.8236.396.272.1512.484.024.87
    下载: 导出CSV

    表 3  阴/阳离子组合捕收剂摩尔比对浮选泡沫性质的影响

    Table 3.  Influence of the molar ratio of mixed collector on foam properties

    捕收剂种类DDA与阴离子捕收剂的摩尔比泡沫层高度/mm泡沫半衰期/s泡沫含水量/%
    DDA6226774.52
    DDA/NaOl2∶14312455.19
    1∶1379952.30
    1∶23410754.72
    DDA/SDS2∶13910951.68
    1∶1338648.72
    1∶2309550.73
    DDA/NA2∶14513059.53
    1∶13810355.92
    1∶23511056.75
    下载: 导出CSV

    表 4  不同阴/阳离子组合捕收剂的表面和热力学性质

    Table 4.  Surface and thermodynamic properties of different mixed cationic/anionic collectors

    捕收剂种类CMC/(mol·L−1)γCMC/(mN·m−1)Γmax/(mol·m−2)Amin/nm2/(kJ·mol−1)
    DDA8.91×10−329.880.85×10−61.95−11.62
    NaOl1.98×10−332.251.04×10−61.60−15.17
    SDS7.97×10−334.250.91×10−61.83−12.56
    NA1.74×10−237.710.83×10−62.00−9.87
    DDA/NaOl0.32×10−325.682.24×10−60.74−19.61
    DDA/SDS0.49×10−322.312.55×10−60.65−18.57
    DDA/NA3.06×10−327.521.89×10−60.88−14.11
    下载: 导出CSV

    表 5  不同阴/阳离子组合捕收剂的协同作用参数

    Table 5.  Synergism parameters for mixed collectors at different mole ratios

    捕收剂种类xcaxcam/(mol·L−1)/(mol·L−1)/(mol·L−1)βm
    DDA/NaOl0.50.448.91×10−31.98×10−30.32×10−3−5.710.17
    DDA/SDS0.50.508.91×10−37.97×10−30.49×10−3−5.800.23
    DDA/NA0.50.548.91×10−31.74×10−23.06×10−3−2.490.59
    下载: 导出CSV
  • [1]

    马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1−7.

    MA Z, LI J W. Analysis of China’s lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1−7.

    [2]

    雷晓力, 胡永达, 杜轶伦. 我国锂供需形势分析及对策建议[J]. 中国矿业, 2016, 25(S1): 25−26.

    LEI X L, HU Y D, DU Z L. Analysis on the supply and demand trend of lithium and recommended management strategies in China[J]. China Mining Magazine, 2016, 25(S1): 25−26.

    [3]

    TIAN J, XU L H, DENG W, et al. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system[J]. Chemical Engineering Science, 2017, 164: 99−107. doi: 10.1016/j.ces.2017.02.013

    [4]

    徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112.

    XU L H, TIAN J, WU H Q, et al. A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112.

    [5]

    WEI Q, FENG L Q, Dong L Y, et al. Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612: 125973−125982. doi: 10.1016/j.colsurfa.2020.125973

    [6]

    HANUMANTHA R, ANTTI B, FORSSBERG K. Flotation of mica minerals and selectivity between muscovite and biotite while using mixed anionic/cationic collectors[J]. Mining, Metallurgy & Exploration, 1990, 7(3): 127−132.

    [7]

    XU L H, HU Y H, TIAN J, et al. Synergistic effect of mixed cationic/anionic collectors on flotation and adsorption of muscovite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492: 181−189. doi: 10.1016/j.colsurfa.2015.11.003

    [8]

    王林林, 朱灵燕, 刘跃龙, 等. 阴/阳离子混合捕收剂用于中低品位锂云母的浮选试验研究[J]. 有色金属(选矿部分), 2019(3): 86−92.

    WANG L L, ZHU L Y, LIU Y L, et al. Flotation of low grade lepidolite using mixed cationic/anionic collectors[J]. Nonferrous Metals (Mineral Processing), 2019(3): 86−92.

    [9]

    CUI H R, CAO G Q, ZHU S Q, et al. Foaming performance evaluation of frother emulsions in the slime flotation: foamability, foam stability, and foam flow[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638: 128310−128317. doi: 10.1016/j.colsurfa.2022.128310

    [10]

    BAI Y, CUI W S, GAO Y J, et al. Synergistic mechanism of mixed cationic/anionic collectors on lepidolite flotation from the perspective of improving the performance of flotation foam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130354−130364. doi: 10.1016/j.colsurfa.2022.130354

    [11]

    BAI Y, LI C X, AN H Y, et al. Flotation and molecular dynamics simulation of muscovite with mixed anionic/cationic collectors[J]. Physicochemical Problems of Mineral Processing, 2020, 56(2): 312−323.

    [12]

    邓海波, 张刚, 任海洋, 等. 季铵盐和十二胺对云母类矿物浮选行为和泡沫稳定性的影响[J]. 非金属矿, 2012, 35(6): 23−25. doi: 10.3969/j.issn.1000-8098.2012.06.008

    DENG H B, ZHANG G, REN H Y, et al. Influence of quaternary ammonium salt and dodecylamine on the flotation behavior and froth stability of mica minerals[J]. Non-Metallic Mines, 2012, 35(6): 23−25. doi: 10.3969/j.issn.1000-8098.2012.06.008

    [13]

    WANG L, LIU R Q, HU Y H, et al. Adsorption of mixed DDA/Naol surfactants at the air/water interface by molecular dynamics simulations[J]. Chemical Engineering Science, 2016, 155: 167−174. doi: 10.1016/j.ces.2016.08.012

    [14]

    HOLLAND P, RUBINGH D. Mixed surfactant systems[M]. New York: Marcel Dekker, 1992.

    [15]

    王淀佐. 浮选剂作用原理及应用[M]. 北京: 冶金工业出版社, 1982.

    WANG D Z. Function principles and applications of flotation agent[M]. Beijing: Metallurgical Industry Press, 2012.

    [16]

    ROSEN M, MILTON J. Surfactants and interfacial phenomena[M]. New York: John Wiley& Sons, 2012.

  • 加载中

(4)

(5)

计量
  • 文章访问数:  266
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2022-10-08
刊出日期:  2023-02-15

目录