-
摘要:
利用赤泥基吸附剂对废水中重金属离子开展吸附特性研究,以酸性废水中Cu2+、Zn2+为研究对象,借助吸附动力学模型、吸附等温线、FTIR、XRD等手段探究了赤泥基吸附剂的吸附机理。结果表明:赤泥基吸附剂对重金属离子Cu2+、Zn2+的吸附过程属于单分子层吸附,Langmuir吸附等温线拟合得出吸附剂对Cu2+、Zn2+的最大吸附量分别为33.12 mg/g、129.88 mg/g,符合准二级动力学模型。赤泥基吸附剂中Si-O-Si键与Cu2+、Zn2+发生相互作用,吸附过程为化学吸附。该研究为铝工业固废赤泥的回收利用提供了新途径。
Abstract:The adsorption characteristics of heavy metal ions in wastewater were investigated by using red mud-based adsorbent. The adsorption mechanism of red mud-based adsorbent was investigated by means of adsorption kinetic model, adsorption isotherm, FTIR and XRD with Cu2+and Zn2+ in acidic wastewater as the target. The results showed that the adsorption process of heavy metal ions Cu2+ and Zn2+ by the red mud-based adsorbent belonged to monomolecular layer adsorption, and the maximum adsorption amounts of Cu2+ and Zn2+ by Langmuir adsorption isotherms were 33.12 mg/g and 129.88 mg/g, respectively, which were in accordance with the quasi-secondary kinetic model. The Si-O-Si in the red mud-based adsorbent interacted with Cu2+ and Zn2+ and the adsorption process was chemisorption. This study provides a new way for the recycling of solid waste red mud from aluminum industry.
-
Key words:
- red mud /
- adsorbent /
- wastewater /
- heavy metal ions /
- adsorption kinetics /
- adsorption mechanism
-
-
表 1 赤泥及赤泥基吸附剂化学成分分析
Table 1. The chemical composition of Red mud and red mud based magnetic adsorbent
/% 试样 TFe Al2O3 SiO2 TiO2 Na CaO MgO 赤泥 38.33 16.62 7.23 6.03 2.73 1.28 0.24 赤泥基吸附剂 45.53 16.22 6.03 5.68 2.18 1.33 0.24 表 2 赤泥基吸附剂的动力学模型拟合参数
Table 2. Kinetic model fitting parameters of red mud-based magnetic adsorbents
重金属离子 准一级动力学 准二级动力学 Qe k1 R2 Qe k2 R2 Cu2+ 19.66 0.09 0.977 30.28 0.03 0.980 Zn2+ 17.21 0.09 0.978 26.50 0.03 0.981 表 3 赤泥基吸附剂的等温模型拟合参数
Table 3. Isothermal model fitting parameters of red mud-based adsorbents
重金属离子 Freundlich参数 Langmuir参数 KF n R2 Qm/(mg·g−1) KL R2 Cu2+ 4.55±0.86 0.36±0.04 0.949 33.12±0.75 0.027±0.00 0.993 Zn2+ 1.12±0.30 0.81±0.07 0.982 129.88±34.59 0.01±0.00 0.987 -
[1] 胡凯旋. 赤泥堆场污染物对地下水环境的影响研究[J]. 水资源开发与管理, 2019(12): 44−48+53.
HU K X. Study on influence of pollutants in red mud yard on groundwater environment[J]. Water Resources Development and Management, 2019(12): 44−48+53.
[2] 于栋, 罗庆, 苏伟, 等. 重金属废水电沉积处理技术研究及应用进展[J]. 化工进展, 2020, 39(5): 1938−1949.
YU D, LUO Q, SU W, et al. A review on research and application of electrodeposition for heavy metal wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1938−1949.
[3] 曹瑞雪, 康泽双, 刘万超, 等. 赤泥吸收矿化CO2技术研究[J]. 有色金属(冶炼部分), 2022(4): 57−60.
CAO R X, KANG Z S, LIU W C, et al. Absorption and mineralization of CO2 with red mud[J]. Nonferrous Metals (Extractive Metallurgy), 2022(4): 57−60.
[4] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483−498. doi: 10.1016/j.resconrec.2018.11.006
[5] 王璐, 郝彦忠, 郝增发. 赤泥中有价金属提取与综合利用进展[J]. 中国有色金属学报, 2018, 28(8): 1697−1710.
WANG L, HAO Y Z, HAO Z F. Progress in valuable metal element recovery and utilization of red mud—A review[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(8): 1697−1710.
[6] LIU Z, ZONG Y, LI H, et al. Characterization of scandium and gallium in red mud with Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and Electron Probe Micro-Analysis (EPMA)[J]. Minerals Engineering, 2018, 119: 263−273. doi: 10.1016/j.mineng.2018.01.038
[7] 柳晓, 韩跃新, 何发钰, 等. 赤泥的危害及其综合利用研究现状[J]. 金属矿山, 2018(11): 7−12.
LIU X, HAN Y X, HE F Y, et al. Research status on hazards and comprehensive utilization of red mud[J]. Metal Mine, 2018(11): 7−12.
[8] 廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019, 39(3): 21−27.
LIAO S Z, YANG J L, MA S J. Research progress in the comprehensive utilization of red mud[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 21−27.
[9] 赵玉莲, 刘敬, 何瑞明, 等. 赤泥还原焙烧磁选回收铁的试验研究[J]. 材料研究与应用, 2017, 11(4): 256−263+268. doi: 10.3969/j.issn.1673-9981.2017.04.010
ZHAO Y L, LIU J, HE R M, et al. The study on reduction roasting and magnetic separation of red mud[J]. Materials Research and Application, 2017, 11(4): 256−263+268. doi: 10.3969/j.issn.1673-9981.2017.04.010
[10] 李艳军, 张浩, 韩跃新, 等. 赤泥资源化回收利用研究进展[J]. 金属矿山, 2021(4): 1−19.
ZHANG Y J, ZHANG H, HAN Y X, et al. Research progresson resource recycling and utilization of red mud[J]. Metal Mine, 2021(4): 1−19.
[11] 张淑敏, 袁帅, 韩跃新, 等. 气基还原焙烧—弱磁选回收赤泥中铁矿物试验[J]. 金属矿山, 2018(6): 179−182.
ZHANG S M, YUAN S, HAN Y X, et al. Recovery of iron minerals from red mud by gas reduction roasting and low intensity magnetic separation[J]. Metal Mine, 2018(6): 179−182.
[12] 吴世超, 朱立新, 孙体昌, 等. 赤泥综合利用现状及展望[J]. 金属矿山, 2019(6): 38−44. doi: 10.19614/j.cnki.jsks.201906007
WU S C, ZHU L X, SUN T C, et al. Comprehensive utilization status and prospect of red mud[J]. Metal Mine, 2019(6): 38−44. doi: 10.19614/j.cnki.jsks.201906007
[13] 张彦娜, 潘志华. 不同温度下赤泥的物理化学特征分析[J]. 济南大学学报(自然科学版), 2005(4): 293−297.
ZHANG Y N, PAN Z H. Analysis of the physicochemical characteristics of red mud at different temperatures[J]. Journal of University of Jinan(Science and Technology), 2005(4): 293−297.
[14] 贾鹏, 王雄, 陈俊. 污泥吸附络合铜的动力学、热力学及其机理研究[J]. 现代矿业, 2020, 36(6): 227−230.
JIA P, WANG X, CHEN J. Studies on kinetics, thermodynamics, and mechanism of adsorption of complexation copper by sludge[J]. Modern Mining, 2020, 36(6): 227−230.
[15] 桂洪杰, 周亮. 非均质水溶有机物吸附特性及模型的研究[J]. 环境科学与技术, 2021, 44(6): 113−118.
GUI H J, ZHOU L. Comparative study on adsorption characteristics and models of heterogeneous water-soluble organic matters[J]. Environmental Science and Technology, 2021, 44(6): 113−118.
[16] 唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49(5): 182−189.
TANG M Y, ZHANG H L, DUAN S Z, et al. Study on effect of temperature on methane adsorption and desorption in coal based on Langmuir model[J]. Coal Science and Technology, 2021, 49(5): 182−189.
-