铝酸亚铁非等温氧化动力学及机理研究

陈健, 王洪阳, 曹泽平, 汪佳瑶, 王子如. 铝酸亚铁非等温氧化动力学及机理研究[J]. 矿产保护与利用, 2023, 43(1): 79-85. doi: 10.13779/j.cnki.issn1001-0076.2023.01.007
引用本文: 陈健, 王洪阳, 曹泽平, 汪佳瑶, 王子如. 铝酸亚铁非等温氧化动力学及机理研究[J]. 矿产保护与利用, 2023, 43(1): 79-85. doi: 10.13779/j.cnki.issn1001-0076.2023.01.007
CHEN Jian, WANG Hongyang, CAO Zeping, WANG Jiayao, WANG Ziru. Study on Kinetics and Mechanism of Non-isothermal Oxidation of Hercynite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 79-85. doi: 10.13779/j.cnki.issn1001-0076.2023.01.007
Citation: CHEN Jian, WANG Hongyang, CAO Zeping, WANG Jiayao, WANG Ziru. Study on Kinetics and Mechanism of Non-isothermal Oxidation of Hercynite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 79-85. doi: 10.13779/j.cnki.issn1001-0076.2023.01.007

铝酸亚铁非等温氧化动力学及机理研究

  • 基金项目: 国家自然科学基金(52004194);安徽理工大学引进人才科研启动基金(2022yjrc25);安徽高校协同创新项目(GXXT-2022-083)
详细信息
    作者简介: 陈健(2002—),男,广西玉林人,本科生,主要研究方向为复杂矿石综合提取与利用,jchen0410@126.com
    通讯作者: 王洪阳(1989—),男,河南永城人,博士,副教授,硕士生导师,主要研究方向为复杂矿石综合提取与利用,hywang3@aust.edu.cn
  • 中图分类号: TF821

Study on Kinetics and Mechanism of Non-isothermal Oxidation of Hercynite

More Information
  • 铝酸亚铁的氧化分解对其后续拜耳法提取氧化铝具有重要意义。对铝酸亚铁的非等温氧化动力学进行研究,并借助XRD和XPS分析其氧化分解机理。结果表明:铝酸亚铁在650~900 K和900~1100 K氧化时分别受化学反应控制和内扩散控制,反应活化能分别为59.36 kJ/mol和20.69 kJ/mol。铝酸亚铁首先氧化分解为磁铁矿和γ-氧化铝,温度升高促使磁铁矿进一步氧化为γ-氧化铁并最终转变为稳定的α-氧化铁,而γ-氧化铝则转变为α-氧化铝。铝酸亚铁中的铁氧化物优先于氧化铝往颗粒表面迁移,从而对颗粒内部铝酸亚铁的氧化分解起到阻碍作用。该研究为降温过程中同步实现铝酸亚铁的氧化分解奠定理论基础。

  • 加载中
  • 图 1  铝酸亚铁的XRD(a)、PSD(b)及SEM(c, d)图

    Figure 1. 

    图 2  铝酸亚铁氧化时的TG和DTG曲线

    Figure 2. 

    图 3  铝酸亚铁氧化的反应率与温度的关系曲线

    Figure 3. 

    图 4  铝酸亚铁氧化过程动力学机理函数线性回归结果

    Figure 4. 

    图 5  铝酸亚铁在773 K (a)和1073 K (b)氧化焙烧产物的XRD图谱

    Figure 5. 

    图 6  铝酸亚铁在773 K (a)和1073 K (b)氧化焙烧产物的XPS图谱

    Figure 6. 

    图 7  铝酸亚铁氧化产物中Fe/Al摩尔比

    Figure 7. 

    表 1  铝酸亚铁氧化反应动力学方程可能的形式

    Table 1.  Possible kinetic equations during hercynite oxidation

    No.Kinetic equationControl step
    F1(x)1−(1−x)1/3=k1tChemical reaction
    F2(x)x=k2tExternal diffusion
    F3(x)1−2x/3−(1−x)2/3=k3tInternal diffusion
    注:x为反应率,t为反应时间,k为反应速率常数。
    下载: 导出CSV
  • [1]

    LI F H, FANG Y T. Ash fusion characteristics of a high aluminum coal and its modification[J]. Energy & Fuels, 2016, 30(4): 2925−2931.

    [2]

    朱华雄, 章伟, 宁树正, 等. 华北石炭−二叠纪煤中铝分布及资源前景[J]. 中国煤炭地质, 2018, 30(6): 21−25,29. doi: 10.3969/j.issn.1674-1803.2018.06.04

    ZHU H X, ZHANG W, NING S Z, et al. Aluminum distribution in North China permo-carboniferous coal and its resource prospect[J]. Coal Geology of China, 2018, 30(6): 21−25,29. doi: 10.3969/j.issn.1674-1803.2018.06.04

    [3]

    张庆松, 李恒天, 李召峰, 等. 不同粒径组合对煤矸石基充填材料性能的影响[J]. 金属矿山, 2020, 523(1): 73−80. doi: 10.19614/j.cnki.jsks.202001009

    ZHANG Q S, LI H T, LI S F, et al. Influence of different grain size combination on gangue-based filling material[J]. Metal Mine, 2020, 523(1): 73−80. doi: 10.19614/j.cnki.jsks.202001009

    [4]

    LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production. 2019, 239: 117946.

    [5]

    USGS (United States Geological Survey). 2022. Mineral commodity summaries: bauxite and alumina. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-bauxite-alumina.pdf

    [6]

    潘昭帅, 张照志, 张泽南, 等. 中国铝土矿进口来源国国别研究[J]. 中国矿业, 2019, 28(2): 13−17,24.

    PAN Z S, ZHANG Z Z, ZHANG Z N, et al. Analysis of the import source country of the bauxite in China[J]. China Mining Magazine, 2019, 28(2): 13−17,24.

    [7]

    杨林, 张锦仙, 吕超, 等. 云南某低品位铝土矿铝硅浮选分离试验研究[J]. 金属矿山, 2022, 549(3): 124−128. doi: 10.19614/j.cnki.jsks.202203016

    YANG L, ZHANG J X, LV C, et al. Experimental study on flotation separation of aluminum and silicon for a low grade bauxite in Yunnan[J]. Metal Mine, 2022, 549(3): 124−128. doi: 10.19614/j.cnki.jsks.202203016

    [8]

    贾敏, 杨磊. 煤矸石煅烧活化提取氧化铝技术研究[J]. 矿产综合利用, 2020, 2: 140−144. doi: 10.3969/j.issn.1000-6532.2020.01.029

    JIA M, YANG L. Study on technology of alumina extraction from coal gangue activated by calcination[J]. Multipurpose Utilization of Mineral Resources, 2020, 2: 140−144. doi: 10.3969/j.issn.1000-6532.2020.01.029

    [9]

    朱辉, 谢贤, 李博琦, 等. 从粉煤灰中提取氧化铝技术进展[J]. 矿产保护与利用, 2020, 40(6): 155−161. doi: 10.13779/j.cnki.issn1001-0076.2020.06.022

    ZHU H, XIE X, LI B Q, et al. Current situation of alumina extraction from fly ash[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 155−161. doi: 10.13779/j.cnki.issn1001-0076.2020.06.022

    [10]

    李浩林, 夏举佩, 曾德恢, 等. 加压酸浸煤矸石中氧化铝工艺及动力学研究[J]. 煤炭转化, 2020, 43(2): 89−96. doi: 10.19726/j.cnki.ebcc.202002012

    LI H L, XIA J P, ZENG D H, et al. Dynamics analysis and technical of leaching alumina from coal gangue by pressured acid leaching process[J]. Coal Conversion, 2020, 43(2): 89−96. doi: 10.19726/j.cnki.ebcc.202002012

    [11]

    EIDEEB A B, BRICHKIN V N, KURTENKOV R V, et al. Extraction of alumina from kaolin by a combination of pyro- and hydro-metallurgical processes[J]. Applied Clay Science. 2019, 172: 146−154.

    [12]

    曾宪飞, 杨志卿, 张顺飞. 拜耳法生产氧化铝溶出过程结疤行为研究[J]. 轻金属, 2019, 11: 12−15. doi: 10.13662/j.cnki.qjs.2019.11.003

    ZENG X F, YANG Z Q, ZHANG S F. Study on digestion scarring behavior during Bayer process alumina production[J]. Light Metals, 2019, 11: 12−15. doi: 10.13662/j.cnki.qjs.2019.11.003

    [13]

    李威, 夏飞龙, 张姗姗, 等. 高硅铝土矿焙烧-碱浸脱硅及热力学研究[J]. 有色金属工程, 2021, 11(10): 74−78. doi: 10.3969/j.issn.2095-1744.2021.10.011

    LI W, XIA F L, ZHANG S S, et al. Study on alkali desilication and thermodynamics of high silicate bauxite[J]. Nonferrous Metals Engineering, 2021, 11(10): 74−78. doi: 10.3969/j.issn.2095-1744.2021.10.011

    [14]

    RAYZMAN V L, ATURIN A V, PEVZNER I Z, et al. Extracting silica and alumina from low-grade bauxite[J]. The Journal of the Minerals, Metals & Materials Society, 2003, 55: 47−50.

    [15]

    刘今, 程汉林, 吴若琼. 低铝硅比铝土矿预脱硅研究[J]. 中南工业大学学报, 1996, 27(6): 666−670.

    LIU J, CHENG H L, WU R Q. The study of preroasting desilication of low A/S ratio bauxite[J]. Journal of Central South University, 1996, 27(6): 666−670.

    [16]

    LI X B, WANG H Y, ZHOU Q S, et al. Reaction behavior of kaolinite with ferric oxide during reduction roasting[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 186−193. doi: 10.1016/S1003-6326(18)64927-1

    [17]

    WANG H Y, ZHANG X X, YANG S Y, et al. Separation of alumina and silica from metakaolinite by reduction roasting−alkaline leaching process: Effect of CaSO4 and CaO[J]. Transactions of Nonferrous Metals Society of China, 2022, 32: 999−1009. doi: 10.1016/S1003-6326(22)65849-7

    [18]

    王洪阳, 张晓雪, 宋少先. 高岭石与氧化铁还原焙烧过程中二氧化硅固溶体的形成机理[J]. 中国有色金属学报, 2021, 31(3): 756−764. doi: 10.11817/j.ysxb.1004.0609.2021-36521

    WANG H Y, ZHANG X X, SONG S X. Formation mechanism of silica solid solution during reduction roasting of kaolinite and ferric oxide[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 756−764. doi: 10.11817/j.ysxb.1004.0609.2021-36521

    [19]

    LI X B, WANG H Y, ZHOU Q S, et al. Phase transformation of hercynite during the oxidative roasting process[J]. JOM, 2020, 72(10): 3341−3347. doi: 10.1007/s11837-020-04215-3

    [20]

    李尉, 付贵勤, 储满生, 等. 红格钒钛磁铁矿氧化物相转变及非等温氧化动力学[J]. 东北大学学报(自然科学版), 2017, 38(4): 517−521. doi: 10.3969/j.issn.1005-3026.2017.04.013

    LI W, FU G Q, CHU M S, et al. Phase transformation and non-isothermal oxidation kinetics of Hongge vanadium-bearing titanomagnetite[J]. Journal of Northeastern University (Natural Science), 2017, 38(4): 517−521. doi: 10.3969/j.issn.1005-3026.2017.04.013

    [21]

    李洪桂. 冶金原理[M]. 北京: 科学出版社, 2005.

    LI H G. Metallurgical principle[M]. Beijing: Science Press, 2005.

    [22]

    JASTRZĘBSKA I, SZCZERBA J, BŁCHOWSKI A, et al. Structure and microstructure evolution of hercynite spinel (Fe2+Al2O4) after annealing treatment. European Journal of Mineralogy. 2017, 29(1): 63−72.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  76
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2022-11-29
刊出日期:  2023-02-15

目录