-
摘要:
铝酸亚铁的氧化分解对其后续拜耳法提取氧化铝具有重要意义。对铝酸亚铁的非等温氧化动力学进行研究,并借助XRD和XPS分析其氧化分解机理。结果表明:铝酸亚铁在650~900 K和900~1100 K氧化时分别受化学反应控制和内扩散控制,反应活化能分别为59.36 kJ/mol和20.69 kJ/mol。铝酸亚铁首先氧化分解为磁铁矿和γ-氧化铝,温度升高促使磁铁矿进一步氧化为γ-氧化铁并最终转变为稳定的α-氧化铁,而γ-氧化铝则转变为α-氧化铝。铝酸亚铁中的铁氧化物优先于氧化铝往颗粒表面迁移,从而对颗粒内部铝酸亚铁的氧化分解起到阻碍作用。该研究为降温过程中同步实现铝酸亚铁的氧化分解奠定理论基础。
Abstract:The decomposition of hercynite through oxidation roasting is significant for the subsequent alumina extraction by Bayer process. In this work, the non-isothermal oxidation kinetics of hercynite was studied and the oxidation mechanism was investigated through the analysis methods of X-ray diffraction and X-ray photoelectron spectroscopy. The results showed that hercynite oxidation at 650~900 K and 900~1100 K was respectively controlled by chemical reaction and internal diffusion, and the corresponding reaction activation energies were 59.36 kJ/mol and 20.69 kJ/mol. Hercynite was firstly oxidized into Fe3O4 and γ-Al2O3, elevated temperature promoted the oxidation of Fe3O4 into γ-Fe2O3 and further into α-Fe2O3, meanwhile γ-Al2O3 was transformed into α-Al2O3. The migration of iron oxides to particle surface was prior to that of alumina in hercynite, thereby hindering the oxidation of particle interior. This study lays the foundation for the simultaneous oxidation of hercynite during cooling process.
-
Key words:
- hercynite /
- oxidation kinetics /
- oxidation mechanism /
- hematite /
- alumina
-
-
表 1 铝酸亚铁氧化反应动力学方程可能的形式
Table 1. Possible kinetic equations during hercynite oxidation
No. Kinetic equation Control step F1(x) 1−(1−x)1/3=k1t Chemical reaction F2(x) x=k2t External diffusion F3(x) 1−2x/3−(1−x)2/3=k3t Internal diffusion 注:x为反应率,t为反应时间,k为反应速率常数。 -
[1] LI F H, FANG Y T. Ash fusion characteristics of a high aluminum coal and its modification[J]. Energy & Fuels, 2016, 30(4): 2925−2931.
[2] 朱华雄, 章伟, 宁树正, 等. 华北石炭−二叠纪煤中铝分布及资源前景[J]. 中国煤炭地质, 2018, 30(6): 21−25,29. doi: 10.3969/j.issn.1674-1803.2018.06.04
ZHU H X, ZHANG W, NING S Z, et al. Aluminum distribution in North China permo-carboniferous coal and its resource prospect[J]. Coal Geology of China, 2018, 30(6): 21−25,29. doi: 10.3969/j.issn.1674-1803.2018.06.04
[3] 张庆松, 李恒天, 李召峰, 等. 不同粒径组合对煤矸石基充填材料性能的影响[J]. 金属矿山, 2020, 523(1): 73−80. doi: 10.19614/j.cnki.jsks.202001009
ZHANG Q S, LI H T, LI S F, et al. Influence of different grain size combination on gangue-based filling material[J]. Metal Mine, 2020, 523(1): 73−80. doi: 10.19614/j.cnki.jsks.202001009
[4] LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production. 2019, 239: 117946.
[5] USGS (United States Geological Survey). 2022. Mineral commodity summaries: bauxite and alumina. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-bauxite-alumina.pdf
[6] 潘昭帅, 张照志, 张泽南, 等. 中国铝土矿进口来源国国别研究[J]. 中国矿业, 2019, 28(2): 13−17,24.
PAN Z S, ZHANG Z Z, ZHANG Z N, et al. Analysis of the import source country of the bauxite in China[J]. China Mining Magazine, 2019, 28(2): 13−17,24.
[7] 杨林, 张锦仙, 吕超, 等. 云南某低品位铝土矿铝硅浮选分离试验研究[J]. 金属矿山, 2022, 549(3): 124−128. doi: 10.19614/j.cnki.jsks.202203016
YANG L, ZHANG J X, LV C, et al. Experimental study on flotation separation of aluminum and silicon for a low grade bauxite in Yunnan[J]. Metal Mine, 2022, 549(3): 124−128. doi: 10.19614/j.cnki.jsks.202203016
[8] 贾敏, 杨磊. 煤矸石煅烧活化提取氧化铝技术研究[J]. 矿产综合利用, 2020, 2: 140−144. doi: 10.3969/j.issn.1000-6532.2020.01.029
JIA M, YANG L. Study on technology of alumina extraction from coal gangue activated by calcination[J]. Multipurpose Utilization of Mineral Resources, 2020, 2: 140−144. doi: 10.3969/j.issn.1000-6532.2020.01.029
[9] 朱辉, 谢贤, 李博琦, 等. 从粉煤灰中提取氧化铝技术进展[J]. 矿产保护与利用, 2020, 40(6): 155−161. doi: 10.13779/j.cnki.issn1001-0076.2020.06.022
ZHU H, XIE X, LI B Q, et al. Current situation of alumina extraction from fly ash[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 155−161. doi: 10.13779/j.cnki.issn1001-0076.2020.06.022
[10] 李浩林, 夏举佩, 曾德恢, 等. 加压酸浸煤矸石中氧化铝工艺及动力学研究[J]. 煤炭转化, 2020, 43(2): 89−96. doi: 10.19726/j.cnki.ebcc.202002012
LI H L, XIA J P, ZENG D H, et al. Dynamics analysis and technical of leaching alumina from coal gangue by pressured acid leaching process[J]. Coal Conversion, 2020, 43(2): 89−96. doi: 10.19726/j.cnki.ebcc.202002012
[11] EIDEEB A B, BRICHKIN V N, KURTENKOV R V, et al. Extraction of alumina from kaolin by a combination of pyro- and hydro-metallurgical processes[J]. Applied Clay Science. 2019, 172: 146−154.
[12] 曾宪飞, 杨志卿, 张顺飞. 拜耳法生产氧化铝溶出过程结疤行为研究[J]. 轻金属, 2019, 11: 12−15. doi: 10.13662/j.cnki.qjs.2019.11.003
ZENG X F, YANG Z Q, ZHANG S F. Study on digestion scarring behavior during Bayer process alumina production[J]. Light Metals, 2019, 11: 12−15. doi: 10.13662/j.cnki.qjs.2019.11.003
[13] 李威, 夏飞龙, 张姗姗, 等. 高硅铝土矿焙烧-碱浸脱硅及热力学研究[J]. 有色金属工程, 2021, 11(10): 74−78. doi: 10.3969/j.issn.2095-1744.2021.10.011
LI W, XIA F L, ZHANG S S, et al. Study on alkali desilication and thermodynamics of high silicate bauxite[J]. Nonferrous Metals Engineering, 2021, 11(10): 74−78. doi: 10.3969/j.issn.2095-1744.2021.10.011
[14] RAYZMAN V L, ATURIN A V, PEVZNER I Z, et al. Extracting silica and alumina from low-grade bauxite[J]. The Journal of the Minerals, Metals & Materials Society, 2003, 55: 47−50.
[15] 刘今, 程汉林, 吴若琼. 低铝硅比铝土矿预脱硅研究[J]. 中南工业大学学报, 1996, 27(6): 666−670.
LIU J, CHENG H L, WU R Q. The study of preroasting desilication of low A/S ratio bauxite[J]. Journal of Central South University, 1996, 27(6): 666−670.
[16] LI X B, WANG H Y, ZHOU Q S, et al. Reaction behavior of kaolinite with ferric oxide during reduction roasting[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 186−193. doi: 10.1016/S1003-6326(18)64927-1
[17] WANG H Y, ZHANG X X, YANG S Y, et al. Separation of alumina and silica from metakaolinite by reduction roasting−alkaline leaching process: Effect of CaSO4 and CaO[J]. Transactions of Nonferrous Metals Society of China, 2022, 32: 999−1009. doi: 10.1016/S1003-6326(22)65849-7
[18] 王洪阳, 张晓雪, 宋少先. 高岭石与氧化铁还原焙烧过程中二氧化硅固溶体的形成机理[J]. 中国有色金属学报, 2021, 31(3): 756−764. doi: 10.11817/j.ysxb.1004.0609.2021-36521
WANG H Y, ZHANG X X, SONG S X. Formation mechanism of silica solid solution during reduction roasting of kaolinite and ferric oxide[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 756−764. doi: 10.11817/j.ysxb.1004.0609.2021-36521
[19] LI X B, WANG H Y, ZHOU Q S, et al. Phase transformation of hercynite during the oxidative roasting process[J]. JOM, 2020, 72(10): 3341−3347. doi: 10.1007/s11837-020-04215-3
[20] 李尉, 付贵勤, 储满生, 等. 红格钒钛磁铁矿氧化物相转变及非等温氧化动力学[J]. 东北大学学报(自然科学版), 2017, 38(4): 517−521. doi: 10.3969/j.issn.1005-3026.2017.04.013
LI W, FU G Q, CHU M S, et al. Phase transformation and non-isothermal oxidation kinetics of Hongge vanadium-bearing titanomagnetite[J]. Journal of Northeastern University (Natural Science), 2017, 38(4): 517−521. doi: 10.3969/j.issn.1005-3026.2017.04.013
[21] 李洪桂. 冶金原理[M]. 北京: 科学出版社, 2005.
LI H G. Metallurgical principle[M]. Beijing: Science Press, 2005.
[22] JASTRZĘBSKA I, SZCZERBA J, BŁCHOWSKI A, et al. Structure and microstructure evolution of hercynite spinel (Fe2+Al2O4) after annealing treatment. European Journal of Mineralogy. 2017, 29(1): 63−72.
-