Experimental Study on Comprehensive Recovery of Beryllium and Fluorite from a Fluorite-beryllium Ore
-
摘要:
某含萤石铍矿中含BeO 0.33%、CaF2 36.53%,含铍矿物为金绿宝石,其他有用矿物为萤石,主要脉石矿物为方解石、白云石、绿泥石等,碳酸盐含量高达44.80%,选别难度极大。基于金绿宝石与碳酸盐矿物的密度差异,以及与主要矿物的可浮性差异,试验采用重液分选—优先浮选萤石—反浮选脉石的工艺流程处理该矿。针对−15 mm的原矿,首先对−15+0.5 mm粒级产品采用重液分选脱除了35.47%的脉石矿物,其中70%以上为碳酸盐矿物;再合并重液分选精矿与−0.5 mm粒级产品在磨矿细度为−0.074 mm占80%的条件下,采用组合捕收剂丁基黄药+丁铵黑药+乙硫氮浮选脱除方铅矿等硫化矿,然后利用组合捕收剂氧化石蜡皂+油酸钠浮选萤石得到含CaF2 95.02%、回收率为65.96%的萤石精矿,浮选尾矿脱泥后反浮选脉石矿物,可获得含BeO 1.32%、回收率为70.92%的铍精矿。铍精矿后续可采用冶金方法提取获得氧化铍产品。
Abstract:The grade of BeO and CaF2 in a beryllium-fluorite ore are 0.33% and 36.53% respectively. The beryllium mineral is chrysoberyl and another useful mineral is fluorite. The main gangue minerals are calcite, dolomite and chlorite, with the carbonate content as high as 44.80%, which makes it extremely difficult for mineral processing. , , A process of heavy liquid separation-fluorite flotation-reverse flotation of gangue was conducted based on the difference of density and floatability between the target and gangue minerals. For the −15 mm raw ore, 35.47% gangue minerals among of which carbonate minerals were over 70%, were removed by heavy liquid separation in the −15+0.5 mm class products. Furthermore, the heavy liquid separation concentrate combined with the −0.5 mm class product was in the grinding fineness of −0.074mm accounted for 80%, and was subjected to flotation using the combined collectors including butylxanthate, ammonium dibutyldithiophosphate, and sodium diethyldithiocarbamate to remove galena and other sulfide minerals. Then fluorite concentrate with CaF2 grade of 95.02% and recovery rate of 65.96% was obtained by furether flotation with the combined collectors of oxidized paraffinum sodium salt and sodium oleate. Following the flotation tailings was deslimed, reverse flotation of gangue minerals was adopted to obtain a beryllium concentrate containing 1.32% BeO with a recovery rate of 70.92%. Subsequently, beryllium concentrate can be treated by metallurgical method to obtain beryllium oxide products.
-
Key words:
- chrysoberyl /
- fluorite /
- heavy liquid separation /
- flotation /
- reverse flotation /
- desliming
-
-
表 1 矿样主要化学组分分析结果
Table 1. Results of main chemical components analysis of ore sample
/% 名称 BeO F CaO MgO Al2O3 CO2 SiO2 含量 0.33 17.80 41.00 4.69 6.96 23.43 4.15 表 2 矿样矿物组成
Table 2. Mineral composition and content of ore sample
矿物 萤石 金绿宝石 方解石 白云石 绿泥石 蒙脱石 白云母 方铅矿 其他 含量/% 36.5 1.6 30.5 14.3 3.7 3.3 9.7 0.2 0.2 表 3 优先浮选萤石试验结果
Table 3. Test results of selective flotation of fluorite
/% 产品名称 产率 BeO品位 CaF2品位 BeO回收率 CaF2回收率 萤石粗精矿 65.53 0.27 66.92 37.96 85.03 铍粗精矿 29.30 0.95 20.49 59.71 11.64 硫化矿产品 5.17 0.21 33.22 2.33 3.33 给矿 100.00 0.47 51.57 100.00 100.00 表 4 脱泥试验结果
Table 4. Test results of desliming
/% 脱泥方式 产品名称 产率 BeO品位 BeO回收率 沉降脱泥 精矿 93.64 0.85 94.92 矿泥 6.36 0.67 5.08 给矿 100.00 0.84 100.00 筛分脱泥 精矿 64.17 0.86 55.19 矿泥 35.83 0.80 44.81 给矿 100.00 0.84 100.00 离心机脱泥 精矿 74.78 1.02 90.98 矿泥 25.22 0.30 9.02 给矿 100.00 0.84 100.00 表 5 反浮脉石矿物试验结果
Table 5. Test results of reverse floating gangue mineral
/% 产品名称 产率 BeO品位 BeO回收率 精矿 72.23 1.32 93.47 尾矿 27.67 0.24 6.53 给矿 100.00 1.02 100.00 表 6 全流程试验结果
Table 6. Test results of full process
/% 产品名称 产率 BeO品位 CaF2品位 BeO品位 CaF2回收率 铍精矿 17.76 1.32 15.19 70.92 7.38 萤石精矿 25.36 0.065 95.02 4.99 65.96 尾矿 56.88 0.14 17.12 24.09 26.66 原矿 100.00 0.33 36.53 100.00 100.00 -
[1] 孙传尧. 选矿工程师手册(第四册)[M]. 北京: 冶金工业出版社, 2015: 64-66.
SUN C Y. Mineral processing engineer's manual (Volume Ⅳ) [M]. Beijing: Metallurgical Industry Press, 2015: 64-66.
[2] 梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11): 6−10. doi: 10.12075/j.issn.1004-4051.2018.11.011
LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast sand development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11): 6−10. doi: 10.12075/j.issn.1004-4051.2018.11.011
[3] 李娜, 高爱红, 王小宁. 全球铍资源供需形势及建议[J]. 中国矿业, 2019, 28(4): 69−73.
LI N, GAO A H, WANG X N. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 2019, 28(4): 69−73.
[4] 李宏, 谭秀民, 张秀峰, 等. 铍资源现状及其选冶技术进展[J]. 有色金属科学与工程, 2022, 13(4): 44−53. doi: 10.13264/j.cnki.ysjskx.2022.04.006
LI H, TAN X M, ZHANG X F, et al. Present situation of beryllium resources and its progress of processing technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 44−53. doi: 10.13264/j.cnki.ysjskx.2022.04.006
[5] 许秀婷, 教镇渤, 海国泉, 等. 铍矿产业发展现状[J]. 新疆有色金属, 2021, 44(1): 4−8. doi: 10.16206/j.cnki.65-1136/tg.2021.01.002
XU X T, JIAO Z B, HAI G Q, et al. Development status of beryllium mining industry[J]. Xinjiang Nonferrous Metals, 2021, 44(1): 4−8. doi: 10.16206/j.cnki.65-1136/tg.2021.01.002
[6] 芮海锋. 金绿宝石型铍矿中铍的提取工艺研究[D]. 湘潭: 湘潭大学, 2017.
RUI H F. Extraction of beryllium from chrysoberyl ore[D]. Xiangtan: Xiangtan University, 2017.
[7] 邓超翰. 一种从含锂的金绿宝石型铍矿中提取锂铍的工艺[D]. 湘潭: 湘潭大学, 2018.
DENG C H. Extraction of lithium andberyllium from lithium-containing chrysoberyl beryllium ore [D]. Xiangtan: Xiangtan University, 2018.
[8] 隆海, 黄阳, 王凡非, 等. 川西某地花岗岩中白云母的选矿试验研究[J]. 中国非金属矿工业导刊, 2014(6): 28−31. doi: 10.3969/j.issn.1007-9386.2014.06.010
LONG H. HUANG Y. WANG F F, et al. Research on muscovite mineral processing for granite in west Sichuan[J]. China Non-metallic Mining Industry Herald, 2014(6): 28−31. doi: 10.3969/j.issn.1007-9386.2014.06.010
[9] 张先华, 张汉忠, 刘勇, 等. 一种从金绿宝石铍矿石提取氧化铍的选冶联合方法: CN201610054060.0[P]. 2016-01-27.
ZHANG X H, ZHANG H Z, LIU Y, et al. A combined method of beneficiation and metallurgy for extracting beryllium oxide from chrysoberyl ore: CN201610054060.0 [P]. 2016-01-27.
[10] 田学达, 邓超翰, 张小云, 等. 一种从含锂的金绿宝石型铍矿石中提取锂铍的方法: CN201810165425.6 [P]. 2018-02-28.
TIAN X D, DENG C H, ZHANG X Y, et al. A method for extracting lithium beryllium from lithium-containing chrysoberyl beryllium ore: CN201810165425.6 [P]. 2018-02-28.
[11] 马进, 张恩玉, 易超, 等. 一种从选矿富集比低的金绿宝石型铍精矿中提取铍的方法: CN201310371862.0 [P]. 2013-08-23.
MA J, ZHANG E Y, YI C , et al. A method of extracting beryllium from chrysoberyl beryllium concentrate with low concentration ratio: CN201310371862.0 [P]. 2013-08-23.
-