Beneficiation-metallurgy Combined Process for the Disseminated Copper-nickel Oxide Ore in Xinjiang
-
摘要:
新疆某浸染状氧化铜镍矿含铜0.89%、镍0.55%,为了开发利用该矿产资源,对其矿石性质进行了详细的研究,结果表明,该矿石工业类型属于超基性岩风化壳型铜镍矿,铜主要以孔雀石、硅孔雀石形式存在,镍主要赋存于绿泥石中。铜、镍氧化率分别为74.16%、96.57%,矿石风化严重,含泥量较大,属于难选氧化铜镍矿。在矿石性质研究的基础上,对矿石进行了浮选、搅拌浸出、池浸等方案对比试验研究,采用池浸回收铜、镍效果较好。当磨矿细度为−0.074 mm占45%、矿浆质量浓度为20%、硫酸用量为50 g/L、浸出时间为24 d时,铜浸出率可达81.27%、镍浸出率为60.32%;对铜镍浸出液采用铁置换沉铜—中和除铁—硫化法沉镍,可以获得海绵铜品位92.05%、铜置换率为97.35%,硫化镍中镍品位为24.32%、镍沉淀率为86.78%。最终铜的回收率为79.12%,镍的回收率为52.35%,实现了铜、镍的有效回收。本研究可为该矿山的开发利用提供技术依据,也可为同类型氧化铜镍矿石开发利用提供参考。
Abstract:The disseminated copper-nickel oxide ore in Xinjiang contained 0.89% copper and 0.55% nickel. An in-depth study of the ore properties was carried out to develop and utilize this mineral resource. According to the results, the industrial type of ore belonged to ultrabasic rock weathering crust type copper-nickel ore, and copper was mainly in the form of malachite and chrysocolla, and nickel was mainly exsited in chlorite. The oxidation rates of copper and nickel were 74.16% and 96.57% respectively. The ore was severely weathered and contained large mud, which belonged to a refractory copper-nickel oxide ore. Based on the study of ore properties, comparative tests of flotation, agitation leaching and pool leaching were carried out. The results showed that the recovery of copper and nickel by pool leaching was better. When the grinding fineness was -0.074 mm accounting for 45%, the pulp concentration was 20%, sulfuric acid dosage was 50 g/L and leaching time was 24 d, the copper leaching rate was 81.27% and the nickel leaching rate was 60.32%. The copper-nickel leaching solution was treated by a method of copper replacement with iron - iron neutralization -nickel precipitation with sodium sulphide ,and the sponge copper grade was 92.05%, copper replacement rate was 97.35%, nickel grade in nickel sulfide was 24.32%, and nickel precipitation rate was 86.78%. Finally, the recovery rate of copper was 79.12%, and the recovery rate of nickel was 52.35%. The process serves as a technical basis for the development and utilization of the mine, as well as a reference for the development and utilization of the same type of copper-nickel oxide ore.
-
-
表 1 化学多元素分析结果
Table 1. Multi-element analysis of the raw ore
/% 组分 Cu Ni Fe S CaO MgO 含量 0.89 0.55 14.80 0.25 4.50 25.54 组分 SiO2 Al2O3 As Cr Co Mn 含量 36.83 6.44 0.05 0.18 0.01 0.15 表 2 主要矿物含量
Table 2. The content of the main mineral
/% 矿物名称 含量 矿物名称 含量 褐铁矿 5.0 钛铁矿、榍石、白钛石 0.2 孔雀石、硅孔雀石 1.2 紫硫镍矿 0.1 黄铁矿、镍黄铁矿、
磁黄铁矿0.3 橄榄石、绿泥石、滑石等 50.0 黄铜矿、铜蓝 0.2 角闪石等其他脉石 41.5 磁铁矿、磁赤铁矿、
赤铁矿1.5 合计 100.0 表 3 铜物相分析结果
Table 3. The results of copper phase analysis
/% 相别 硫化铜 自由氧化铜 结合氧化铜 其他 总铜 含量 0.18 0.49 0.17 0.05 0.89 分布率 20.22 55.06 19.10 5.62 100.00 表 4 镍物相分析结果
Table 4. The results of nickel phase analysis
/% 相别 硅酸盐镍 硫化物镍 硫酸镍 总镍 含量 0.53 0.019 0.005 0.554 分布率 95.67 3.43 0.90 100.00 表 5 绿泥石X射线能谱检测结果
Table 5. X-ray energy spectrum results of chlorite
/% 矿物名称
及编号O Mg Al Si Fe Ni Cu 总量 镍绿泥石123 46.64 11.38 1.82 18.62 9.50 9.71 2.32 100.00 镍绿泥石124 30.01 6.67 6.66 36.50 9.20 10.96 / 100.00 绿泥石126 50.11 16.58 5.69 15.90 10.82 0.90 / 100.00 绿泥石127 49.67 15.72 0.42 21.39 12.80 / / 100.00 绿泥石128 50.95 10.46 4.63 23.32 8.83 1.35 0.42 100.00 含镍绿泥石130 48.96 12.78 6.97 14.84 11.21 2.37 2.87 100.00 绿泥石139 53.01 16.98 7.82 15.58 6.61 / / 100.00 绿泥石148 49.49 11.16 1.66 22.84 14.85 100.00 角闪石137 27.27 6.57 3.83 17.02 12.48 C 21.32 Ca 11.51 100.00 角闪石146 41.25 11.57 6.81 24.23 6.93 Ca 9.20 100.00 蛇纹石149 51.70 21.23 0.60 22.40 4.08 / / 100.00 蛇纹石133 45.94 21.12 / 24.88 8.06 / / 100.00 蛇纹石131 53.68 21.85 / 20.73 3.74 / / 100.00 滑石134 44.98 16.30 / 29.78 6.47 / / 100.00 高岭土136 54.28 5.55 13.46 21.23 3.92 / 1.57 100.00 方解石150 56.04 / / / / C 19.24 Ca 24.72 100.00 表 6 原则工艺流程对比试验结果
Table 6. Results of Principle process flow exploration test
/% 原则工艺
流程产物
名称产率 品位 回收率/浸出率 Cu Ni Cu Ni 浮选 粗精矿 13.92 1.45 0.62 22.67 15.66 尾 矿 86.08 0.80 0.54 77.33 84.34 给 矿 100.00 0.89 0.55 100.00 100.00 搅拌浸出 浸渣 81.24 0.34 0.35 68.96 48.30 池浸(未磨) 浸渣 80.52 0.31 0.34 71.95 50.22 表 7 除铁试验结果
Table 7. Results of iron removal test
浸液离子浓度/(g·L−1) 置换后溶液中
离子浓度/(g·L−1)镍损失率/% 除铁率/% Ni2+ Fe2+ Ni2+ Fe3+ 1.20 13.25 1.10 6.12 8.33 53.81 表 8 硫化镍沉淀试验结果
Table 8. Results of nickel sulfide precipitation test
沉淀前贵液镍离子浓度/(g·L−1) 条件 沉淀后溶液镍离子浓度/(g·L−1) 镍品位/% 镍沉淀率/% 1.19 不除铁直接沉淀 0.13 2.24 89.08 1.07 除铁后沉淀 0.02 24.19 98.13 表 9 闭路试验结果
Table 9. Results of Closed circuit test
/% 作业
名称产品
名称产率 品位 回收率 对作业 对原矿 Cu Ni Cu Ni Cu Ni 浸出 浸出液 / 2.15 1.20 81.27 60.32 81.27 60.32 浸 渣 79.86 0.19 0.23 18.73 39.68 18.73 39.68 置换
沉淀海绵铜 / 92.05 / 97.35 / 79.12 / 硫化镍 / / 24.32 / 86.78 / 52.35 原矿 100.00 0.89 0.55 100.00 100.00 100.00 100.00 -
[1] 伦绍雄, 陆薇宇. 细粒嵌布贫铜镍矿的特征及其对选矿的影响[J]. 武汉工程大学学报, 2013, 35(11): 32−36. doi: 10.3969/j.issn.1674-2869.2013.11.008
LUN S X, LU W Y. Mineralongical feature of lean copper-nickel ore with finely disseminated and its effects on mineral processing[J]. Wuhan Tnst. Tech, 2013, 35(11): 32−36. doi: 10.3969/j.issn.1674-2869.2013.11.008
[2] 徐凤平. 四川会理某铜镍矿选矿试验研究[D]. 昆明: 昆明理工大学, 2007: 9-12.
XU F P. Experimental study on beneficiation of a copper-nickel ore in Huili of Sichuan province[D]. Kunming: Kunming University of Science and Technology, 2007: 9-12.
[3] 谢杰, 胡春梅. 国内外硫化铜镍矿选矿现状及未来发展方向[J]. 矿产保护与利用, 2018(5): 143−150. doi: 10.13779/j.cnki.issn1001-0076.2018.05.018
XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel - copper ore at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2018(5): 143−150. doi: 10.13779/j.cnki.issn1001-0076.2018.05.018
[4] 何浩, 邵延海. 我国硫化铜镍矿浮选工艺及药剂研究现状[J]. 矿产保护与利用, 2020(2): 100−104. doi: 10.13779/j.cnki.issn1001-0076.2020.02.013
HE H, SHAO Y H. Research status on flotation process and reagent for copper - nickel sulfid ore[J]. Conservation and Utilization of Mineral Resources, 2020(2): 100−104. doi: 10.13779/j.cnki.issn1001-0076.2020.02.013
[5] 李滦宁, 马玖彤, 张凤君, 等. 铜精矿中铜镍的浸出研究[J]. 湿法冶金, 2001, 20(1): 14−17. doi: 10.3969/j.issn.1009-2617.2001.01.003
LI L N, MA J T, ZHANG F J, et al. Study on leaching of copper and nickel from copper concentrate[J]. Hydrometallurgy of China, 2001, 20(1): 14−17. doi: 10.3969/j.issn.1009-2617.2001.01.003
[6] 唐劭禹, 许阳芳, 杨磊, 等. 浮选-磁选联合工艺处理新疆某铜镍矿[J]. 矿产保护与利用, 2021(5): 90−96.
TANG S Y, XU Y F, YANG L, et al. Treatment of a copper nickel ore in Xinjiang by flotation - magnetic separation combined process[J]. Conservation and Utilization of Mineral Resources, 2021(5): 90−96.
[7] 李博文, 阳恒, 程少逸, 等. 金川硫化铜镍矿酸性介质中新型浮选药剂体系研究[J]. 矿产保护与利用, 2022(2): 25−31. doi: 10.13779/j.cnki.issn1001-0076.2022.07.002
LI B W, YANG H, CHENG S Y, et al. Research on the flotation reagent regime of jinchuan copper - nickel sulfide ore in acidic medium[J]. Conservation and Utilization of Mineral Resources, 2022(2): 25−31. doi: 10.13779/j.cnki.issn1001-0076.2022.07.002
[8] 朱福良, 黄达, 于倩倩, 等. 铜镍合金中Cu、Ni的选择性浸出研究[J]. 湿法冶金, 2008, 27(4): 227−229. doi: 10.3969/j.issn.1009-2617.2008.04.009
ZHU F L, HUANG D, YU Q Q, et al. Selective leaching of copper and nickel from copper-nickel alloy[J]. Hydrometallurgy of China, 2008, 27(4): 227−229. doi: 10.3969/j.issn.1009-2617.2008.04.009
[9] 马红周, 朱丽芳, 袁守谦, 等. 用硫酸从含铜镍渣中浸出铜的试验研究[J]. 湿法冶金, 2013, 32(6): 357−359. doi: 10.13355/j.cnki.sfyj.2013.06.007
MA H Z, ZHU L F, YUAN S Q, et al. Leaching of copper from nickel slag containing copper using sulfuric acid[J]. Hydrometallurgy of China, 2013, 32(6): 357−359. doi: 10.13355/j.cnki.sfyj.2013.06.007
[10] 阮书锋, 居中军, 李强, 等. 活性氧化镁从硫酸盐介质中选择性沉淀镍钴的研究[J]. 有色金属(冶炼部分), 2013(9): 1−4.
RUAN S F, JU Z J, LI Q, et al. Study on selective precipitation on of nickel and cobalt from sulfate medium with active magnesium oxide[J]. Non-ferrous metal(Smelting part), 2013(9): 1−4.
[11] 吕晋芳, 童雄, 崔毅琦. 云南低品位铜镍矿选矿试验研究[J]. 矿产综合利用, 2011(3): 25−28. doi: 10.3969/j.issn.1000-6532.2011.03.006
LV J F, TONG X, CUI Y Q. Experimental study on mineral processing technology for a low-grade copper-nickel ore from Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2011(3): 25−28. doi: 10.3969/j.issn.1000-6532.2011.03.006
[12] 张英, 王毓华, 汤玉和, 等. 某低品位铜镍硫化矿浮选试验研究[J]. 矿冶工程, 2009, 29(3): 40−42. doi: 10.3969/j.issn.0253-6099.2009.03.012
ZHANG Y, WANG Y H, TANG Y H, et al. Experimental study on the flotation of a low-grade copper-nickel sulfide ore[J]. Ming and Metallurgical Engineering, 2009, 29(3): 40−42. doi: 10.3969/j.issn.0253-6099.2009.03.012
[13] 周韫, 廖乾, 解振朝, 等. 氧化铜钴精矿浸出试验研究[J]. 矿冶工程, 2016, 36(6): 84−86. doi: 10.3969/j.issn.0253-6099.2016.06.021
ZHOU Y, LIAO Q, XIE Z Z, et al. Leaching test of an oxidized copper-cobalt concentrate[J]. Mining Engineering, 2016, 36(6): 84−86. doi: 10.3969/j.issn.0253-6099.2016.06.021
[14] 李江涛, 库建刚, 程琼. 某硫化铜镍矿浮选试验研究[J]. 矿产保护与利用, 2006(1): 37−39. doi: 10.3969/j.issn.1001-0076.2006.01.008
LI J T, KU J G, CHENG Q, et al. Flotation experiment study of copper-nickel sulfide ore[J]. Conservation and Utilization of Mineral Resources, 2006(1): 37−39. doi: 10.3969/j.issn.1001-0076.2006.01.008
[15] 邢姜, 冷红光, 韩百岁, 等. 红土镍矿湿法冶金工艺现状及研究进展[J]. 有色矿冶, 2021, 37(5): 27−32. doi: 10.3969/j.issn.1007-967X.2021.05.008
XING J, LENG H G, HAN B S, et al. Metallurgical technology situation and research progress of laterite nickel ore[J]. Non-ferrous Mining and Metallurgy, 2021, 37(5): 27−32. doi: 10.3969/j.issn.1007-967X.2021.05.008
-