MgO/Al2O3质量比对褐铁矿型红土镍矿烧结成矿行为的影响

候三亚, 黄家豪, 张豆, 陈靖, 胡前盛, 罗骏, 饶明军. MgO/Al2O3质量比对褐铁矿型红土镍矿烧结成矿行为的影响[J]. 矿产保护与利用, 2023, 43(1): 140-147. doi: 10.13779/j.cnki.issn1001-0076.2023.01.015
引用本文: 候三亚, 黄家豪, 张豆, 陈靖, 胡前盛, 罗骏, 饶明军. MgO/Al2O3质量比对褐铁矿型红土镍矿烧结成矿行为的影响[J]. 矿产保护与利用, 2023, 43(1): 140-147. doi: 10.13779/j.cnki.issn1001-0076.2023.01.015
HOU Sanya, HUANG Jiahao, Zhang Dou, CHEN Jing, HU Qiansheng, LUO Jun, RAO Mingjun. Effect of MgO/Al2O3 Mass Ratio on Mineralization Behavior of Limonitic Laterite Ore During Sintering[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 140-147. doi: 10.13779/j.cnki.issn1001-0076.2023.01.015
Citation: HOU Sanya, HUANG Jiahao, Zhang Dou, CHEN Jing, HU Qiansheng, LUO Jun, RAO Mingjun. Effect of MgO/Al2O3 Mass Ratio on Mineralization Behavior of Limonitic Laterite Ore During Sintering[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 140-147. doi: 10.13779/j.cnki.issn1001-0076.2023.01.015

MgO/Al2O3质量比对褐铁矿型红土镍矿烧结成矿行为的影响

  • 基金项目: 中南大学研究生创新项目资助(1053320215529)。
详细信息
    作者简介: 候三亚(1995—),男,硕士,主要研究方向为难处理资源综合利用
    通讯作者: 罗骏(1988—),男,博士后,E-mail:luojun2013@csu.edu.cn
  • 中图分类号: TF815;TF046

Effect of MgO/Al2O3 Mass Ratio on Mineralization Behavior of Limonitic Laterite Ore During Sintering

More Information
  • 为了提高红土镍矿烧结矿的产质量指标,基于热力学分析,查明了MgO/Al2O3质量比对高温烧结过程液相量及其黏度的影响;再通过微型烧结试验探讨了镁/铝质量比对烧结矿的物相组成、黏结相强度的影响,阐明其对褐铁矿型红土镍矿烧结成矿行为的影响;最后通过烧结杯烧结扩大试验进行了有效性验证。微型烧结试验结果表明,在烧结温度为1 300 ℃、烧结气氛为5% CO+95% N2、二元碱度m(CaO)/m(SiO2)=1.3的条件下,m(MgO)/m(Al2O3)=0.5~0.8范围内,黏结相主要由钙镁黄长石和钙镁橄榄石构成,强度超过4 000N/个。烧结杯验证试验表明,镁/铝质量比由0.5提高至0.7时,烧结矿的成品率无明显变化保持在70%左右,但是其转鼓强度由49.73%提高至56.67%,烧结矿的转鼓强度得到有效改善,适宜的镁/铝质量比为0.6~0.7。

  • 加载中
  • 图 1  MgO/Al2O3质量比对液相生成量的影响

    Figure 1. 

    图 2  MgO/Al2O3质量比对液相黏度的影响

    Figure 2. 

    图 3  不同MgO/Al2O3质量比下烧结团块X射线衍射图谱

    Figure 3. 

    图 4  MgO/Al2O3质量比对烧结团块黏结相强度的影响

    Figure 4. 

    图 5  不同MgO/Al2O3质量比烧结团块微观结构

    Figure 5. 

    图 6  不同MgO/Al2O3质量比对烧结矿成品率和转鼓强度的影响

    Figure 6. 

    图 7  m(MgO)/m(Al2O3)=0.7时烧结矿X射线衍射图谱

    Figure 7. 

    图 8  m(MgO)/m(Al2O3)=0.7时烧结矿微观结构((a)、(b)、(c):50X烧结矿矿相图片;(d)、(e)、(f):500X烧结矿不同区域矿相图片,(g)、(h)、(i)分别为200X、500X、1000X烧结矿内部矿相图片)

    Figure 8. 

    图 9  m(MgO)/m(Al2O3)=0.7时烧结矿SEM-EDS图谱

    Figure 9. 

    表 1  原料的主要化学成分和烧损(干基)

    Table 1.  Main chemical composition and burning loss of raw materials /%

    原料名称TFeNiCr2O3MnOCaOMgOAl2O3SiO2S烧损
    红土矿-1#47.880.533.330.694.660.586.621.660.1111.55
    红土矿-2#47.720.545.640.653.341.653.982.790.1311.03
    红土矿-3#48.370.813.220.800.570.647.892.500.2012.29
    生石灰0.42---79.063.362.064.59-6.54
    蛇纹石粉14.641.001.170.272.6925.201.5530.730.0414.15
    高炉返矿51.990.872.501.198.543.145.396.130.05-
    烧结返矿52.020.862.431.198.463.285.305.970.04-
    焦粉8.00---5.202.5128.3948.39-82.00
    无烟煤6.61---1.431.3124.0652.48-88.81
    下载: 导出CSV

    表 2  燃料的工业分析

    Table 2.  Proximate analysis of solid fuels /%

    固体燃料固定碳(FCdaf)挥发分(Ad)灰分(Vdaf)
    焦粉79.372.6318.00
    无烟煤83.805.0111.19
    注:d为干燥基,daf为干燥无灰基。
    下载: 导出CSV

    表 3  化学试剂配加量及混合料主要化学成分

    Table 3.  Chemical reagents and the main chemical composition of the mixture

    No.配加量/g主要化学成分/%
    红土矿-3#Ca(OH)2SiO2MgOTFeCaOMgOAl2O3SiO2R2MgO/Al2O3
    1101.190.45047.818.450.647.936.501.300.08
    2101.200.460.1147.278.451.587.846.501.300.20
    3101.210.480.2946.408.453.087.696.501.300.40
    4101.240.490.4845.998.453.827.636.501.300.50
    5101.270.500.6645.568.454.547.556.501.300.60
    6101.290.520.8444.758.455.947.426.501.300.80
    下载: 导出CSV
  • [1]

    党晓娥, 谭金滔, 卢苏君. 低品位褐铁矿型红土镍矿资源化利用与新技术研发现状[J]. 有色金属(冶炼部分), 2022(4): 12−20.

    DANG X E, TAN J T, LU S J, et al. Resource utilization and new technology development of low grade limonite laterite nickel ore[J]. Non-ferrous metals (smelting part), 2022(4): 12−20.

    [2]

    李光辉, 姜涛, 罗骏, 等. 红土镍矿冶炼镍铁新技术: 原理与应用[M]. 北京: 冶金工业出版社, 2018: 1-5.

    LI G H, JIANG T, LUO J, et. al. New technologies for marking ferronickel from laterite ores: principles and applications [M]. Beijing: Metallurgical Industry Press, 2018: 1-5.

    [3]

    杨志强, 王永前, 高谦, 等. 中国镍资源开发现状与可持续发展策略及其关键技术[J]. 矿产保护与利用, 2016(2): 58−69.

    YANG Z Q, WANG Y Q, GAO Q, et al. Present situation and development strategy and key technologies of China’s nickel resources sustainable development[J]. Conservation and Utilization of Mineral Resources, 2016(2): 58−69.

    [4]

    ZHANG J, GAO L, HE Z, et al. Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting[J]. Journal of Materials Research and Technology, 2020, 9(6): 12223−12235. doi: 10.1016/j.jmrt.2020.08.036

    [5]

    薛钰霄, 潘建, 朱德庆, 等. 红土镍矿烧结节能降耗技术研究及应用[J]. 中国冶金, 2021, 31(9): 92−97.

    XUE Y X, PAN J, ZHU D Q, et al. Research and application on energy saving and consumption reduction technology of lateritic nickel ore sintering[J]. China Metallurgy, 2021, 31(9): 92−97.

    [6]

    刘云峰, 陈滨. 红土镍矿资源现状及其冶炼工艺的研究进展[J]. 矿冶, 2014, 23(4): 70−75+78.

    LIU Y F, CHEN B. The current status of laterite nickel ore resources andadvance in its processing technology[J]. Mining& Metallurgy, 2014, 23(4): 70−75+78.

    [7]

    ZHU D, XUE Y, PAN J, et al. An investigation into the distinctive sintering performance and consolidation mechanism of limonitic laterite ore[J]. Powder Technol, 2020, 367: 616−631. doi: 10.1016/j.powtec.2020.03.066

    [8]

    TU Y K, ZHANG Y B, SU Z J, et al. Mineralization mechanism of limonitic laterite sinter under different fuel dosage: Effect of FeO[J]. Powder Technol, 2021, 198: 117064.

    [9]

    郭恩光. 褐铁矿型红土镍矿烧结行为研究及工艺优化[D]. 重庆: 重庆大学, 2014.

    GUO E G. Sintering behaviour and process optimization of nickel laterite based of limonitic style[D]. Chongqing: Chongqing University, 2014.

    [10]

    KESKINKILIC E. Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route[J]. METALS, 2019, 9(9): 974. doi: 10.3390/met9090974

    [11]

    XUE Y, ZHU D, PAN J, et al. Promoting the effective utilization of limonitic nickel laterite by the optimization of (MgO+Al2O3)/SiO2 mass ratio during sintering[J]. ISIJ International, 2022, 62(3): 457−464. doi: 10.2355/isijinternational.ISIJINT-2021-362

    [12]

    LI H P, WU S L, HONG Z B, et al. The mechanism of the effect of Al2O3 content on the liquid phase fluidity of iron ore fines[J]. Processes, 2019, 7(12): .931. doi: 10.3390/pr7120931

    [13]

    CHAI Y F, YU W T, ZHANG J L, et al. Influencing mechanism of Al2O3 on sintered liquid phase of iron ore fines based on thermal and kinetic analysis[J]. Ironmaking & Steelmaking, 2019, 46(5): 424−430.

    [14]

    JI, ZHAO, GAN, et al. Microstructure and Minerals Evolution of Iron Ore Sinter: Influence of SiO2 and Al2O3[J]. Minerals, 2019, 9(7): 449. doi: 10.3390/min9070449

    [15]

    王喆, 张建良, 左海滨, 等. MgO/Al2O3比对烧结矿矿物组成及冶金性能的影响[J]. 烧结球团, 2013, 38(5): 1−5.

    WANG Z, ZHANG J L, ZUO H B, et. al. Influence of MgO/Al2O3 ratio on sinter mineral composition and metallurgical properties[J]. Sintering and Pelletizing, 2013, 38(5): 1−5.

    [16]

    胡长庆, 张国柱, 崔利民. MgO/Al2O3比对铁矿粉烧结液相生成的影响[J]. 烧结球团, 2016, 41(5): 19−23.

    HU C Q, ZHANG G Z, CUI L M, et. al. Influence of MgO/Al2O3 ratio on liquid phase generation during iron ore sintering[J]. Sintering and Pelletizing, 2016, 41(5): 19−23.

    [17]

    胡长庆, 闫龙飞, 张国柱, 等. MgO/Al2O3对复合铁酸钙显微形貌和显微硬度的影响[J]. 烧结球团, 2018, 43(2): 14−20.

    HU C Q, YAN F L, ZHANG G Z, et. al. Effect of MgO/Al2O3 on microscopic structure and micro-hardness of silico-ferrite of calcium and aluminum ( SFCA)[J]. Sintering and Pelletizing, 2018, 43(2): 14−20.

    [18]

    龙明华, 张东升, 肖扬武, 等. MgO /Al2O3 比值对高炉炉渣流动性和结构的影响[J]. 重庆理工大学学报( 自然科学), 2015, 29(7): 49−53.

    LONG M H, ZHANG D S, XIAO Y W, et al. Effect of MgO/ Al2O3 on fluidity and structure of blast furnace slag[J]. Journal of Chongqing University of Technology:Natural Science, 2015, 29(7): 49−53.

    [19]

    ORIMOTO T, NODA T, ICHIDA M, et al. Desulfurization technology in the blast furnace raceway by MgO–SiO2 flux injection[J]. ISIJ International, 2008, 48(2): 141−146. doi: 10.2355/isijinternational.48.141

    [20]

    胡长庆, 闫龙飞, 张国柱, 等. MgO/Al2O3对复合铁酸钙润湿性和黏度的影响[J]. 烧结球团, 2018, 43(1): 6−9+14.

    HU C Q, YAN F L, ZHANG G Z, et al. Effect of MgO/Al2O3 on wettability and viscosity of SFCA[J]. Sintering and Pelletizing, 2018, 43(1): 6−9+14.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  161
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2022-05-22
刊出日期:  2023-02-15

目录