Effect of MgO/Al2O3 Mass Ratio on Mineralization Behavior of Limonitic Laterite Ore During Sintering
-
摘要:
为了提高红土镍矿烧结矿的产质量指标,基于热力学分析,查明了MgO/Al2O3质量比对高温烧结过程液相量及其黏度的影响;再通过微型烧结试验探讨了镁/铝质量比对烧结矿的物相组成、黏结相强度的影响,阐明其对褐铁矿型红土镍矿烧结成矿行为的影响;最后通过烧结杯烧结扩大试验进行了有效性验证。微型烧结试验结果表明,在烧结温度为1 300 ℃、烧结气氛为5% CO+95% N2、二元碱度m(CaO)/m(SiO2)=1.3的条件下,m(MgO)/m(Al2O3)=0.5~0.8范围内,黏结相主要由钙镁黄长石和钙镁橄榄石构成,强度超过4 000N/个。烧结杯验证试验表明,镁/铝质量比由0.5提高至0.7时,烧结矿的成品率无明显变化保持在70%左右,但是其转鼓强度由49.73%提高至56.67%,烧结矿的转鼓强度得到有效改善,适宜的镁/铝质量比为0.6~0.7。
Abstract:To improve the production and quality indices of laterite ore sinter, the effect of MgO/Al2O3 mass ratio on the liquid volume and viscosity during high-temperature sintering was investigated, based on thermodynamic analysis. The influence of MgO/Al2O3 ratio on the phase composition and bonding phase strength of sinter was discussed through micro-sintering test, and the impact of MgO/Al2O3 mass ratio on sintering mineralization behavior of limonitic laterite ore was clarified. Finally, the validity of our findings was confirmed through sinter-pot large-scale sintering test. The results of micro-sintering test showed that the bond phase was mainly composed of calc-magnesia melilite and olivine and their compressive strength exceeded 4 000 N/P, under the condition of m(MgO)/m(Al2O3)=0.5~0.8, sintering temperature of 1 300 ℃, sintering atmosphere of 5%CO+95%N2, binary basicity of m(CaO)/m(SiO2)=1.3. The sinter-pot verification test revealed that increasing the MgO/Al2O3 mass ratio from 0.5 to 0.7, the yield of sinter did not change significantly and remained at approximately 70%, but its tumbling strength of sinter increased from 49.73% to 56.67%, and the optimal MgO/Al2O3 mass ratio was in the range of 0.6-0.7.
-
Key words:
- limonite laterite ore /
- sintering mineralization /
- MgO/Al2O3 /
- bonding phase
-
-
表 1 原料的主要化学成分和烧损(干基)
Table 1. Main chemical composition and burning loss of raw materials
/% 原料名称 TFe Ni Cr2O3 MnO CaO MgO Al2O3 SiO2 S 烧损 红土矿-1# 47.88 0.53 3.33 0.69 4.66 0.58 6.62 1.66 0.11 11.55 红土矿-2# 47.72 0.54 5.64 0.65 3.34 1.65 3.98 2.79 0.13 11.03 红土矿-3# 48.37 0.81 3.22 0.80 0.57 0.64 7.89 2.50 0.20 12.29 生石灰 0.42 - - - 79.06 3.36 2.06 4.59 - 6.54 蛇纹石粉 14.64 1.00 1.17 0.27 2.69 25.20 1.55 30.73 0.04 14.15 高炉返矿 51.99 0.87 2.50 1.19 8.54 3.14 5.39 6.13 0.05 - 烧结返矿 52.02 0.86 2.43 1.19 8.46 3.28 5.30 5.97 0.04 - 焦粉 8.00 - - - 5.20 2.51 28.39 48.39 - 82.00 无烟煤 6.61 - - - 1.43 1.31 24.06 52.48 - 88.81 表 2 燃料的工业分析
Table 2. Proximate analysis of solid fuels
/% 固体燃料 固定碳(FCdaf) 挥发分(Ad) 灰分(Vdaf) 焦粉 79.37 2.63 18.00 无烟煤 83.80 5.01 11.19 注:d为干燥基,daf为干燥无灰基。 表 3 化学试剂配加量及混合料主要化学成分
Table 3. Chemical reagents and the main chemical composition of the mixture
No. 配加量/g 主要化学成分/% 红土矿-3# Ca(OH)2 SiO2 MgO TFe CaO MgO Al2O3 SiO2 R2 MgO/Al2O3 1 10 1.19 0.45 0 47.81 8.45 0.64 7.93 6.50 1.30 0.08 2 10 1.20 0.46 0.11 47.27 8.45 1.58 7.84 6.50 1.30 0.20 3 10 1.21 0.48 0.29 46.40 8.45 3.08 7.69 6.50 1.30 0.40 4 10 1.24 0.49 0.48 45.99 8.45 3.82 7.63 6.50 1.30 0.50 5 10 1.27 0.50 0.66 45.56 8.45 4.54 7.55 6.50 1.30 0.60 6 10 1.29 0.52 0.84 44.75 8.45 5.94 7.42 6.50 1.30 0.80 -
[1] 党晓娥, 谭金滔, 卢苏君. 低品位褐铁矿型红土镍矿资源化利用与新技术研发现状[J]. 有色金属(冶炼部分), 2022(4): 12−20.
DANG X E, TAN J T, LU S J, et al. Resource utilization and new technology development of low grade limonite laterite nickel ore[J]. Non-ferrous metals (smelting part), 2022(4): 12−20.
[2] 李光辉, 姜涛, 罗骏, 等. 红土镍矿冶炼镍铁新技术: 原理与应用[M]. 北京: 冶金工业出版社, 2018: 1-5.
LI G H, JIANG T, LUO J, et. al. New technologies for marking ferronickel from laterite ores: principles and applications [M]. Beijing: Metallurgical Industry Press, 2018: 1-5.
[3] 杨志强, 王永前, 高谦, 等. 中国镍资源开发现状与可持续发展策略及其关键技术[J]. 矿产保护与利用, 2016(2): 58−69.
YANG Z Q, WANG Y Q, GAO Q, et al. Present situation and development strategy and key technologies of China’s nickel resources sustainable development[J]. Conservation and Utilization of Mineral Resources, 2016(2): 58−69.
[4] ZHANG J, GAO L, HE Z, et al. Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting[J]. Journal of Materials Research and Technology, 2020, 9(6): 12223−12235. doi: 10.1016/j.jmrt.2020.08.036
[5] 薛钰霄, 潘建, 朱德庆, 等. 红土镍矿烧结节能降耗技术研究及应用[J]. 中国冶金, 2021, 31(9): 92−97.
XUE Y X, PAN J, ZHU D Q, et al. Research and application on energy saving and consumption reduction technology of lateritic nickel ore sintering[J]. China Metallurgy, 2021, 31(9): 92−97.
[6] 刘云峰, 陈滨. 红土镍矿资源现状及其冶炼工艺的研究进展[J]. 矿冶, 2014, 23(4): 70−75+78.
LIU Y F, CHEN B. The current status of laterite nickel ore resources andadvance in its processing technology[J]. Mining& Metallurgy, 2014, 23(4): 70−75+78.
[7] ZHU D, XUE Y, PAN J, et al. An investigation into the distinctive sintering performance and consolidation mechanism of limonitic laterite ore[J]. Powder Technol, 2020, 367: 616−631. doi: 10.1016/j.powtec.2020.03.066
[8] TU Y K, ZHANG Y B, SU Z J, et al. Mineralization mechanism of limonitic laterite sinter under different fuel dosage: Effect of FeO[J]. Powder Technol, 2021, 198: 117064.
[9] 郭恩光. 褐铁矿型红土镍矿烧结行为研究及工艺优化[D]. 重庆: 重庆大学, 2014.
GUO E G. Sintering behaviour and process optimization of nickel laterite based of limonitic style[D]. Chongqing: Chongqing University, 2014.
[10] KESKINKILIC E. Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route[J]. METALS, 2019, 9(9): 974. doi: 10.3390/met9090974
[11] XUE Y, ZHU D, PAN J, et al. Promoting the effective utilization of limonitic nickel laterite by the optimization of (MgO+Al2O3)/SiO2 mass ratio during sintering[J]. ISIJ International, 2022, 62(3): 457−464. doi: 10.2355/isijinternational.ISIJINT-2021-362
[12] LI H P, WU S L, HONG Z B, et al. The mechanism of the effect of Al2O3 content on the liquid phase fluidity of iron ore fines[J]. Processes, 2019, 7(12): .931. doi: 10.3390/pr7120931
[13] CHAI Y F, YU W T, ZHANG J L, et al. Influencing mechanism of Al2O3 on sintered liquid phase of iron ore fines based on thermal and kinetic analysis[J]. Ironmaking & Steelmaking, 2019, 46(5): 424−430.
[14] JI, ZHAO, GAN, et al. Microstructure and Minerals Evolution of Iron Ore Sinter: Influence of SiO2 and Al2O3[J]. Minerals, 2019, 9(7): 449. doi: 10.3390/min9070449
[15] 王喆, 张建良, 左海滨, 等. MgO/Al2O3比对烧结矿矿物组成及冶金性能的影响[J]. 烧结球团, 2013, 38(5): 1−5.
WANG Z, ZHANG J L, ZUO H B, et. al. Influence of MgO/Al2O3 ratio on sinter mineral composition and metallurgical properties[J]. Sintering and Pelletizing, 2013, 38(5): 1−5.
[16] 胡长庆, 张国柱, 崔利民. MgO/Al2O3比对铁矿粉烧结液相生成的影响[J]. 烧结球团, 2016, 41(5): 19−23.
HU C Q, ZHANG G Z, CUI L M, et. al. Influence of MgO/Al2O3 ratio on liquid phase generation during iron ore sintering[J]. Sintering and Pelletizing, 2016, 41(5): 19−23.
[17] 胡长庆, 闫龙飞, 张国柱, 等. MgO/Al2O3对复合铁酸钙显微形貌和显微硬度的影响[J]. 烧结球团, 2018, 43(2): 14−20.
HU C Q, YAN F L, ZHANG G Z, et. al. Effect of MgO/Al2O3 on microscopic structure and micro-hardness of silico-ferrite of calcium and aluminum ( SFCA)[J]. Sintering and Pelletizing, 2018, 43(2): 14−20.
[18] 龙明华, 张东升, 肖扬武, 等. MgO /Al2O3 比值对高炉炉渣流动性和结构的影响[J]. 重庆理工大学学报( 自然科学), 2015, 29(7): 49−53.
LONG M H, ZHANG D S, XIAO Y W, et al. Effect of MgO/ Al2O3 on fluidity and structure of blast furnace slag[J]. Journal of Chongqing University of Technology:Natural Science, 2015, 29(7): 49−53.
[19] ORIMOTO T, NODA T, ICHIDA M, et al. Desulfurization technology in the blast furnace raceway by MgO–SiO2 flux injection[J]. ISIJ International, 2008, 48(2): 141−146. doi: 10.2355/isijinternational.48.141
[20] 胡长庆, 闫龙飞, 张国柱, 等. MgO/Al2O3对复合铁酸钙润湿性和黏度的影响[J]. 烧结球团, 2018, 43(1): 6−9+14.
HU C Q, YAN F L, ZHANG G Z, et al. Effect of MgO/Al2O3 on wettability and viscosity of SFCA[J]. Sintering and Pelletizing, 2018, 43(1): 6−9+14.
-