-
摘要:
锂资源作为当前新型能源矿产备受关注。锂辉石是典型的伟晶岩型锂矿,也是提取锂的主要原料,目前主要通过浮选法对锂辉石进行分离和提纯。对锂辉石矿石性质及其浮选药剂展开系统评述,介绍了锂辉石晶体结构和表面特性以及锂辉石浮选捕收剂、活化剂和抑制剂的作用机理。锂辉石碎磨后通过表面暴露出的Li+和Al3+与捕收剂发生吸附反应,金属离子活化剂Fe3+、Ca2+、Mg2+主要通过增加锂辉石表面的捕收剂吸附位点来促进锂辉石浮选,而抑制剂主要通过阻碍矿物表面捕收剂的吸附或在矿物表面形成亲水性沉淀来达到浮选分离效果。通过分析前人对锂辉石浮选药剂作用机理研究成果,以期能够为锂资源的高效利用提供支撑,并对锂辉石浮选的未来发展方向进行了展望,为新型药剂的开发提供新思路。
Abstract:As one of new energy mineral, lithium resources have attracted much attention. Spodumene ore is a typical pegmatite lithium ore, serves as the primary source for lithium extraction. Currently, flotation is the predominant method employed for the separation and purification of spodumene. In this paper, the properties of spodumene and its flotation reagents are systematically reviewed, focusing on the crystal structure and surface properties, as well as the action mechanisms of collectors, activators and depressants for spodumene flotation. The exposed Li+ and Al3+ on spodumene surface after comminution are responsible for the adsorption of collectors, and metal ion activators such as Fe3+, Ca2+, Mg2+ enhance spodumene flotation mainly by increasing the adsorption sites of collectors. While depressants achieve flotation separation by hindering the adsorption of collectors on mineral surface and form hydrophilic precipitation on the mineral surface. This review aims to provide a valuable theoretical support for the efficient utilization of lithium resources by analyzing the previous researches on the flotation mechanism of spodumene. Additionally, the future directions for spodumene flotation are proposed, which provides a new idea for the development of new flotation reagents.
-
Key words:
- spodumene ore /
- crystal structure /
- collector /
- regulator /
- flotation
-
-
表 1 锂辉石晶体中各原子间化学键的Mulliken布居及键长
Table 1. Mulliken population and bond length of chemical bonds between atoms in spodumene crystal
键种类 布居值 键长/nm Si−O 0.52~0.70 1.594~1.651 Al−O 0.28~0.42 1.836~2.040 Li−O −0.04~0.01 2.107~2.308 表 2 锂辉石常用捕收剂作用机理
Table 2. Action mechanism of common collectors for spodumene
捕收剂类型 药剂 主要官能团 最佳pH范围 作用机理 特点 单一捕收剂 油酸钠 油酸根离子 7.0~8.8 油酸根离子与锂辉石表面的Al3+发生化学作用 选择性好,捕收能力弱 十二胺 RNH3+、RNH2·RNH3+ 2~12 阳离子通过静电力吸附在锂辉石表面 捕收能力好,选择性差 螯合捕收剂 −COOH、−SO3H、=N−OH、−NH2、−C=O、−OH 7~9 与锂辉石表面金属原子发生配位,生成稳定螯合物 选择性和浮选性好,价格昂贵 两性捕收剂 −COOH和−NH2 6~9 同时含阴离子和阳离子活性基团结构,强化
捕收性能具有良好的水溶性和抗低温性,选择性好 组合捕收剂 油酸钠和十二胺组合
捕收剂油酸根离子和RNH3+、RNH2·RNH3+ 8~9 通过油酸钠的化学吸附和十二胺的静电吸附共同作用于锂辉石表面 选择性和捕收能力好 油酸钠和脂肪酸甲酯磺酸钠阴离子组合捕收剂 油酸根离子和
磺酸根7~9 脂肪酸甲酯磺酸钠加强了油酸钠在锂辉石
表面的吸附油酸钠和十二烷基琥珀酰亚胺组合捕收剂 油酸根离子和酰亚胺基团 7~9 十二烷基琥珀酰亚胺通过烃链间范德华力或氢键作用促进油酸钠在矿浆中的溶解和分散 -
[1] 林大泽. 锂的用途及其资源开发[J]. 中国安全科学学报, 2004(9): 76−80+98.
LIN D Z. Uses of lithium and its resource exploitation[J]. China Safety Science Journal, 2004(9): 76−80+98.
[2] 朱丽, 顾汉念, 杨永琼, 等. 黏土型锂矿资源提锂工艺研究进展[J]. 轻金属, 2020(12): 8−13.
ZHU L, GU H N, YANG Y Q, et al. Research progress of lithium extraction from clay-type lithium ore resources[J]. Light Metals, 2020(12): 8−13.
[3] 刘爽, 王水龙, 邢新龙, 等. 江西省锂矿资源分布、矿床类型及找矿前景[J]. 资源环境与工程, 2019, 33(2): 195−198+207.
LIU S, WANG S L, XING X L, et al. Distribution of lithium ore resources, types of deposits and prospecting prospects in Jiangxi Province[J]. Resources Environment & Engineering, 2019, 33(2): 195−198+207.
[4] WANG D H, DAI H Z, LIU S B, et al. Research and exploration progress on lithium deposits in China[J]. China Geology, 2020, 3(1): 137−152. doi: 10.31035/cg2020018
[5] 殷德洪, 斯提芬·路易多尔德, 海尔穆特·安特雷科维兹齐. 全球锂的资源、应用及其再生利用[J]. 世界有色金属, 2011(8): 25−29.
YIN D H, STEFAN L, HELMUT A. Global lithium resources, applications and their recycling[J]. World Nonferrous Metals, 2011(8): 25−29.
[6] 钟辉, 周燕芳, 殷辉安. 卤水锂资源开发技术进展[J]. 矿产综合利用, 2003(1): 23−28. doi: 10.3969/j.issn.1000-6532.2003.01.006
ZHONG H, ZHOU Y F, YIN H A. Technical progress in the development of lithium brine resources[J]. Comprehensive Utilization of Minerals, 2003(1): 23−28. doi: 10.3969/j.issn.1000-6532.2003.01.006
[7] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.
WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonics and Metallogenics, 2022, 46(5): 848−866.
[8] 张明杰, 郭清富. 21世纪的能源金属—锂的冶金现状及发展[J]. 盐湖研究, 2001(3): 52−60.
ZHANG M J, GUO Q F. Metallurgical status and development of lithium in the 21st century[J]. Salt Lake Research, 2001(3): 52−60.
[9] 冯安生. 锂矿物的资源、加工和应用[J]. 矿产保护与利用, 1993(1): 39−46.
FENG A S. Resources, processing and application of lithium minerals[J]. Conservation and Utilization of Mineral Resources, 1993(1): 39−46.
[10] 陈胜虎, 罗仙平, 杨 备, 等. 锂辉石的选矿工艺研究及现状[J]. 现代矿业, 2010(7): 5.
CHEN S H, LUO X P, YANG B, et al. Research and current status of spodumene beneficiation process[J]. Modern Mining, 2010(7): 5.
[11] 谢贞付, 王毓华, 于福顺, 等. 伟晶岩型锂辉石矿浮选研究综述[J]. 稀有金属, 2013, 37(4): 641−649.
XIE Z F, WANG Y H, YU F S, et al. Review of flotation studies in pegmatite-type spodumene ore[J]. Chinese Journal of Rare Metals, 2013, 37(4): 641−649.
[12] 李新冬, 黄万抚, 文金磊, 等. 锂辉石矿的工艺矿物学与选矿工艺研究[J]. 硅酸盐报, 2014, 33(5): 1207−1301.
LI X D, HUANG W F, WEN J L, et al. Study on process mineralogy and mineral processing technology of spodumene ore[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(5): 1207−1301.
[13] 孙传尧, 印万忠. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社, 2001: 56.
SUN C Y, YIN W Z. Flotation principle of silicate minerals[M]. Beijing: Science Press, 2001: 56.
[14] 潘兆橹. 结晶学与矿物学(下)[M]. 北京: 地质出版社, 1994.
PAN Z Q. Crystallography and Mineralogy (Part Ⅱ) [M]. Beijing: Geological Publishing House: 1994.
[15] LEV F, SAEED F, LICHAU L, et al. Spodumene flotation mechanism[J]. Minerals, 2019, 9(6): 37.
[16] 项华妹. 锂辉石电子结构及其可浮性的量子化学研究[D]. 赣州: 江西理工大学, 2014
XIANG H M. Quantum chemical study on electronic structure and flotabilityof spodumene[D]. Ganzhou: Jiangxi University of Science and Technology, 2014
[17] MOON, K. S. 1986. Surface and crystal chemistry of spodumene and its flotation behavior[Z]. Diss. Abstr. Int. 46.
[18] MOON K S, FUERSTENAU D W. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates[J]. International Journal of Mineral Processing, 2003, 72: 11. doi: 10.1016/S0301-7516(03)00084-X
[19] XU L H, PENG T F, TIAN J, et al. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation[J]. Applied Surface Science, 2017, 426: 1005−1022. doi: 10.1016/j.apsusc.2017.07.295
[20] 谢瑞琦, 朱一民, 刘杰, 等. 基于密度泛函理论的锂辉石晶体结构及(110)面表面化学基因特性研究[J]. 金属矿山, 2020(6): 68−74.
XIE R Q, ZHU Y M, LIU J, et al. The first principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6): 68−74.
[21] 田佳. 伟晶岩型锂辉石矿强化浮选分离的基础研究[D]. 绵阳: 西南科技大学, 2018.
TIAN J. Basic research on enhanced flotation separation of pegmatite-type spodumene ore[D]. Mianyang: Southwest University of Science and Technology. 2018.
[22] 周贺鹏. 微细粒锂辉石聚团浮选特性及矿物表面反应机理[D]. 中国矿业大学, 2020.
ZHOU H P. Agglomeration flotation characteristics ofmicro-fine spodumene and the reactionmechanism on minerals surface[D]. China University of Mining and Technology, 2020.
[23] 于福顺, 闫平科, 蒋曼, 等. 锂辉石、钾长石矿物基因特性及其可浮性分析[J]. 金属矿山, 2020, 49(6): 75−80.
YU F S, YAN P K, JIANG M, et al. Minerals genetic properties and their floatability of spodumene and potassium feldspar[J]. Metal Mine, 2020, 49(6): 75−80.
[24] HAOUAOUI M. , MAIER H J., KARAMAN I. Flow stress anisotropy and Bauschinger effect in ultrafinegrained copper[J]. Acta Meterialia, 2006, 54(20): 5477−5488. doi: 10.1016/j.actamat.2006.07.022
[25] BULATOVIC S. M. Handbook of flotation reagents[M]. Netherlands: Elsevier Publishers, 2007.
[26] KOH P. T. L., HAO F. P., SMITH L. K, et alThe effect of particle shape and hydrophobicity inflotation[J]. International Journal of Mineral Processing, 2009, 93(2): 128−134.
[27] MIETTINEN T., RALSTON J. FORNASIERO DThe limits of fine particle flotation[J]. Minerals Engineering, 2010, 23(5): 420−437.
[28] 胡阳, 吴港生, 褚浩然, 等. 锂辉石矿浮选理论与药剂研究的新进展[J]. 有色金属工程, 2021, 11(11): 10−19.
HU Y, WU G S, CHU H R, et al. New development in the flotation theory and reagents of sodumene ore[J]. Nonferrous Metals Engineering, 2021, 11(11): 10−19.
[29] 董栋, 程宏伟, 郭保万, 等. 锂辉石选矿技术现状及展望[J]. 矿产保护与利用, 2018(4): 130−134.
DONG D, CHENG H W, GUO B W, et al. Research situation and prospect on the mineral processing technology of spodumene[J]. Conservation and Utilization of Mineral Resources, 2018(4): 130−134.
[30] 朱一民, 谢瑞琦, 张猛. 锂辉石浮选捕收剂及调整剂研究综述[J]. 金属矿山, 2019(2): 15−21.
ZHU Y M, XIE R Q, ZHANG M. Review of spodumene flotation collectors and regulators[J]. Metal Mine, 2019(2): 15−21.
[31] 张杰. 锂辉石矿浮选基础理论与工艺研究[D]. 绵阳: 西南科技大学, 2015.
ZHANG J. Research on the basic theory and process of spodumene flotation[D]. Mianyang: Southwest University of Science and Technology. 2015.
[32] ZHU G L, WANG X M, LIE Z, et al. Wetting characteristics of spodumene surfaces as influenced by collector adsorption[J]. Minerals Engineering, 2019, 130: 117−128.
[33] XIE R Q, ZHU Y M, LIU J, et al. Research status of spodumene flotation: a review[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(5): 321−334. doi: 10.1080/08827508.2020.1776278
[34] 徐龙华, 董发勤, 巫侯琴, 等. 油酸钠浮选锂辉石的作用机理研究[J]. 矿物学报, 2013, 33(2): 181−184. doi: 10.16461/j.cnki.1000-4734.2013.02.003
XU L H, DONG F Q, WU H Q, et al. Study on the mechanism of action of sodium oleate flotation spodumene[J]. Acta Mineralogica Sinica, 2013, 33(2): 181−184. doi: 10.16461/j.cnki.1000-4734.2013.02.003
[35] 冯木, 孙伟, 刘若华, 等. 组合捕收剂在锂辉石浮选中协同作用的研究[J]. 有色金属(选矿部分), 2015(2): 96−100.
FENG M, SUN W, LIN R H. Study of synergistic effect of combined collectors in the flotation of spodumene[J]. Nonferrous Metals(Mineral Processing Section), 2015(2): 96−100.
[36] 陈勇, 常宝乾, 李恒等. 澳大利亚某锂辉石矿石浮选试验[J]. 金属矿山, 2019(9): 87−91. doi: 10.19614/j.cnki.jsks.201909015
CHEN Y, CHANG B Q, LI H, et al. Experimental research on a spodumene flotation in Australia[J]. Metal Mine, 2019(9): 87−91. doi: 10.19614/j.cnki.jsks.201909015
[37] 何桂春, 蒋巍, 项华妹. 锂辉石选矿研究现状及展望[J]. 矿业研究与开发, 2014, 34(4): 61−65.
HE G C, JIANG W, XIANG H M. Research status and prospects of spodumen beneficiation[J]. Mining Research and Development, 2014, 34(4): 61−65.
[38] 何建璋. 新型捕收剂在锂铍浮选中的应用[J]. 新疆有色金属, 2009(2): 37−41. doi: 10.16206/j.cnki.65-1136/tg.2009.02.015
HE J Z. Application of novel collector in lithium beryllium flotation[J]. Xinjiang Nonferrous Metals, 2009(2): 37−41. doi: 10.16206/j.cnki.65-1136/tg.2009.02.015
[39] 王毓华. 新型捕收剂浮选锂辉石矿的试验研究[J]. 矿产综合利用, 2002(5): 11.
WANG Y H. Experimental study of a new collector flotation spodumene mine[J]. Comprehensive Utilization of Minerals, 2002(5): 11.
[40] 焦益民. 过氧脂肪酸皂的制备及应用[J]. 化学世界, 1988(8): 337−339.
JIAO Y M. Preparation and application of peroxy fatty acid soap[J]. Chemical World, 1988(8): 337−339.
[41] 温胜来, 王玲珑, 范林青. 江西某低品位锂辉石矿选矿试验[J]. 金属矿山, 2017(6): 109−112. doi: 10.3969/j.issn.1001-1250.2017.06.022
WEN S L, WANG L L, FAN L Q. Beneficiation experiment on a low grade spodumene ore from Jiangxi[J]. Metal Mine, 2017(6): 109−112. doi: 10.3969/j.issn.1001-1250.2017.06.022
[42] ABRAMOV A A, LI C G, CUI H S. Theoretical basis and regularity of action mechanism of cation collector in mineral flotation[J]. Metallic Ore Dressing Abroad, 2007(8): 9.
[43] 冯海强, 王毓华. 锂辉石浮选捕收剂及其构效关系研究综述[J]. 稀有金属, 2022, 46(8): 1083−1096.
FENG H Q, WANG Y H. Review of spodumene flotation collector and its structure-activity relationship[J]. Rare Metals, 2022, 46(8): 1083−1096.
[44] 陈家灵, 谢海云, 柳彦昊, 等. 锂辉石的选矿研究进展[J]. 矿冶, 2022, 31(3): 112−118. doi: 10.3969/j.issn.1005-7854.2022.03.015
CHEN J L, XIE H Y, LIU Y H, et al. Research progress of spodumene beneficiation[J]. Mining and Metallurgy, 2022, 31(3): 112−118. doi: 10.3969/j.issn.1005-7854.2022.03.015
[45] 印万忠, 孙传尧. 硅酸盐矿物可浮性研究及晶体化学分析[J]. 有色金属(选矿部分), 1998(3): 1.
YIN W Z, SUN C Y. Study on floatability and crystal chemical analysis of silicate minerals[J]. Nonferrous Metals(Mineral Processing Part), 1998(3): 1.
[46] SHU K Q, XU L H, WU H Q, et al. Selective flotation separation of spodumene from feldspar using sodium alginate as an organic depressant[J]. Separation and Purification Technology, 2020, 248: 117122. doi: 10.1016/j.seppur.2020.117122
[47] R. J. PUGHThe role of the solution chemistry of dodecylamine and oleic acid collectors in the flotation of fluorite[J]. Colloids Surf, 1986, 18: 19−41.
[48] XIE R Q, ZHU Y M, LIU J, et al. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz[J]. Separation and Purification Technology, 2021, 264: 118445. doi: 10.1016/j.seppur.2021.118445
[49] 田建利, 肖国光, 黄光耀, 等. 两性浮选捕收剂合成研究进展[J]. 湖南有色金属, 2012, 28(1): 13−16+60. doi: 10.3969/j.issn.1003-5540.2012.01.004
TIAN J L, XIAO G G, HUANG G Y, et al. Research advance on synthesis of amphoteric flotation collectors[J]. Hunan Nonferrous Metals, 2012, 28(1): 13−16+60. doi: 10.3969/j.issn.1003-5540.2012.01.004
[50] 王毓华, 于福顺. 新型捕收剂浮选锂辉石和绿柱石[J]. 中南大学学报(自然科学版), 2005(5): 93−97.
WANG Y H , YU F S. Flotation of spodumene and beryl with a new collector[J]. Journal of Central South University (Science and Technology), 2005(5): 93−97.
[51] HUANG L, MALTESH C, SOMASUNDARAN P. Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina-water interface[J]. Journal of Colloid and Interface Science, 1996, 177(1): 222. doi: 10.1006/jcis.1996.0024
[52] HUANG Z, YAN Z L, GU T R. Mixed adsorption of cationic and anionic surfactants from aqueous solution on silica gel[J]. Colloids and Surfaces, 1989, 36(3): 353. doi: 10.1016/0166-6622(89)80249-5
[53] ALEXANDROVA L, HANUMANTHA R K, FORSBERG K S E, et al. The influence of mixed cationic anionic surfactants on the three-phase contact parameters in silica-solution systems[J]. Colloids and SurfacesA:Physicochemical and Engineering Aspects, 2011, 373(1): 145.
[54] 田佳, 徐龙华, 邓伟, 等. 混合捕收剂浮选分离锂辉石与长石及其机理[J]. 中南大学学报(自然科学版), 2018, 49(3): 511−515.
TIAN J, XU L H, DENG W. Flotation separation of spodumene from feldspar with mixed collectors and its mechanism[J]. Journal of Central South University(Science and Technology), 2018, 49(3): 511−515.
[55] 严更生. 锂辉石浮选生产实践[J]. 新疆有色金属, 2007(1): 27. doi: 10.16206/j.cnki.65-1136/tg.2007.01.011
YAN G S. Spodumene flotation production practice[J]. Xinjiang Nonferrous Metals, 2007(1): 27. doi: 10.16206/j.cnki.65-1136/tg.2007.01.011
[56] 刘若华, 孙伟, 冯木, 等. 新型捕收剂浮选锂辉石的作用机理研究[J]. 有色金属(选矿部分), 2018(2): 87−90+98.
LIU R H, SUN W, FENG M, et al. Mechanism on the Flotation of Spodumene with New Collectors[J]. Nonferrous Metals Mieral Processing Section, 2018(2): 87−90+98.
[57] 刘若华, 孙伟, 冯木, 等. 组合捕收剂浮选锂辉石的作用机理[J]. 中国有色金属学报, 2018, 28(3): 612−617. doi: 10.19476/j.ysxb.1004.0609.2018.03.21
LIU R H, SUN W, FENG M, et al. Mechanism of action of flotation spodumene by combined collector[J]. Chinese Journal of Nonferrous Metals, 2018, 28(3): 612−617. doi: 10.19476/j.ysxb.1004.0609.2018.03.21
[58] XU L, JIAO F, JIA W H, et al. Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 594: 124605. doi: 10.1016/j.colsurfa.2020.124605
[59] 李成秀, 程仁举, 刘星. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5): 1−8. doi: 10.3969/j.issn.1000-6532.2021.05.001
LI C X, CHENG R J, LIU X. Research status and prospect of spodumene ore beneficiation technology in China[J]. Comprehensive Utilization of Minerals, 2021(5): 1−8. doi: 10.3969/j.issn.1000-6532.2021.05.001
[60] 张闿. 浮选药剂的组合使用[M]. 北京: 冶金工业出版社, 1994.
ZHANG M. Combined use of flotation agents[M]. Beijing: Metallurgical Industry Press, 1994.
[61] 程仁举, 李成秀, 刘星, 等. 川西某低品位锂辉石矿分选试验研究[J]. 有色金属(选矿部分), 2017(5): 42−45+50.
CHENG R J, LI C X, LIU X, et al. Experimental research on beneficiation for a low-grade spodumene ore in Western Sichuan[J]. Nonferrous Metals (Mieral Processing Section), 2017(5): 42−45+50.
[62] 朱建光. 浮选药剂[M]. 北京: 冶金工业出版社, 1993.
ZHU J G. Flotation reagent[M]. Beijing: Metallurgical Industry Press, 1993.
[63] ZHANG Y B, ZHOU H P, CAO Y J, et al. Activation mechanism of calcium hydrolysate on the spodumene surface and its effect on the adsorption of collector[J/OL]. Minerals Engineering, 2021, 174: 107221. https://doi.org/10.1016/j.mineng.2021.10721.
[64] 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868. doi: 10.19476/j.ysxb.1004.0609.2017.04.024
GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868. doi: 10.19476/j.ysxb.1004.0609.2017.04.024
[65] ZHANG J, WANG W Q, LIU J, et al. Fe(Ⅲ) as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Mineral Engineering, 2014, 61: 16−22. doi: 10.1016/j.mineng.2014.03.004
[66] 李金林, 刘丹, 王伊杰, 等. 锂辉石浮选机理研究现状[J]. 硅酸盐通报, 2016, 35(8): 2400−2406. doi: 10.16552/j.cnki.issn1001-1625.2016.08.013
LI J J, LIU D, WANG Y J, et al. Review about flotation mechanism on spodumene[J]. Bulletin of Chinese Ceramic Society, 2016, 35(8): 2400−2406. doi: 10.16552/j.cnki.issn1001-1625.2016.08.013
[67] YU F S, WANG Y H, ZHANG L, et al. Role of oleic acid ionic_molecular complexes in the flotation of spodumene[J]. Minerals Engineering, 2015, 71: 7−12. doi: 10.1016/j.mineng.2014.10.001
[68] 冯木. 新型捕收剂在锂辉石浮选中的作用机理及表面化学分析[D]. 长沙: 中南大学, 2014.
FENG M. Mechanism and surface chemical analysis of new collector in spodumene flotation[D]. Changsha: Central South University, 2014.
[69] YU F S, WANG Y H, WANG J M, et al. First-principle investigation on mechanism of Ca ion activating flotation of spodumene[J]. Rare Metals, 2014, 33(3): 358−362. doi: 10.1007/s12598-014-0304-5
[70] LIU W J, ZHANG S Q, WANG W Q, et al. The effects of Ca (Ⅱ) and Mg (Ⅱ) ions on the flotation of spodumene using NaOl[J]. Minerals Engineering, 2015(79): 40−46.
[71] 刘仁辅. 锂辉石、绿柱石浮选分离若干问题的探讨[J]. 新疆有色金属, 1981(2): 19−26. doi: 10.16206/j.cnki.65-1136/tg.1981.02.002
LIU R F. Discussion on some problems of flotation separation of spodumene and beryl[J]. Xinjiang nonferrous metals, 1981(2): 19−26. doi: 10.16206/j.cnki.65-1136/tg.1981.02.002
[72] 高扬, 刘全军, 宋建文. 四川康定选铁尾矿回收锂辉石选矿试验研究[J]. 轻金属, 2017(7): 1−5. doi: 10.13662/j.cnki.qjs.2017.07.001
GAO Y, LIU Q J, SONG J W. Experimental study on beneficiation of spodumene recovery from iron tailings in Kangding, Sichuan[J]. Light Metals, 2017(7): 1−5. doi: 10.13662/j.cnki.qjs.2017.07.001
[73] 王毓华, 于福顺, 陈兴华, 等. 锂辉石与绿柱石浮选分离的试验研究[J]. 稀有金属, 2005, 29(3): 320−323. doi: 10.3969/j.issn.0258-7076.2005.03.015
WANG Y H, YU F S, CHEN X H, et al. Experimental study on flotation separation of spodumene and beryl[J]. Rare Metals, 2005, 29(3): 320−323. doi: 10.3969/j.issn.0258-7076.2005.03.015
-