等离子体的产生及其在矿物浮选中的应用

张怀瑶, 田付强, 李亚超, 郝海青, 范桂侠. 等离子体的产生及其在矿物浮选中的应用[J]. 矿产保护与利用, 2023, 43(2): 60-65. doi: 10.13779/j.cnki.issn1001-0076.2023.02.009
引用本文: 张怀瑶, 田付强, 李亚超, 郝海青, 范桂侠. 等离子体的产生及其在矿物浮选中的应用[J]. 矿产保护与利用, 2023, 43(2): 60-65. doi: 10.13779/j.cnki.issn1001-0076.2023.02.009
ZHANG Huaiyao, TIAN Fuqiang, LI Yachao, HAO Haiqing, FAN Guixia. Generation of Plasma and Its Application in Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 60-65. doi: 10.13779/j.cnki.issn1001-0076.2023.02.009
Citation: ZHANG Huaiyao, TIAN Fuqiang, LI Yachao, HAO Haiqing, FAN Guixia. Generation of Plasma and Its Application in Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 60-65. doi: 10.13779/j.cnki.issn1001-0076.2023.02.009

等离子体的产生及其在矿物浮选中的应用

  • 基金项目: 国家重点研发计划项目(2022YFC3900100);国家自然科学基金资助项目(U1908226);河南省重点研发专项项目(221111320300);中国博士后科学基金项目(2022M710851)
详细信息
    通讯作者: 范桂侠,副教授,博士,E-mail:cumtfgx@126.com
  • 中图分类号: TD923

Generation of Plasma and Its Application in Mineral Flotation

More Information
  • 等离子体作为一种绿色环保的表面改性技术,因其操作简单、反应速度快、能耗低、工艺干法化等优良性能而备受人们关注。综述了等离子体的产生方式及其在矿物浮选领域中的应用,阐述了其在浮选中对矿物表面改性和药剂改性的作用机理,并展望了等离子体在矿物加工领域中的应用前景,以期为等离子体技术在矿产资源高效利用领域的推广应用提供参考。

  • 加载中
  • 图 1  等离子体产生过程及改性

    Figure 1. 

    图 2  介质阻挡放电示意图[16]

    Figure 2. 

    图 3  射流等离子体装置示意图[22]

    Figure 3. 

    图 4  微波等离子体装置示意图[24]

    Figure 4. 

    图 5  氧气等离子体在砷黄铁矿和黄铁矿表面处理过程[34]

    Figure 5. 

  • [1]

    张添钧. 化学选矿技术在低品位矿石处理中的应用[J]. 有色矿冶, 2022, 38(1): 20−22. doi: 10.3969/j.issn.1007-967X.2022.01.005

    ZHANG T J. The application of chemical beneficiation technology in the treatment of low grade ore[J]. Non-Ferrous Mining and Metallurgy, 2022, 38(1): 20−22. doi: 10.3969/j.issn.1007-967X.2022.01.005

    [2]

    CHANGPING G, ZHIGANG Y, JIHUA Z, et al. Surface modification of ilmenite by a novel surfactant dodecyliminodimethylenediphosphoinc acid and its sequent influence on ilmenite floatability[J]. Separation Science and Technology, 2020, 55(2): 358−368.

    [3]

    杨光, 苏兴国, 马自飞, 等. 东鞍山贫杂铁矿石选矿技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 140−148. doi: 10.13779/j.cnki.issn1001-0076.2021.05.020

    YANG G, SU X G, MA Z F, et al. Research status and development trend of beneficiation technology for Donganshan iron ore with low grade and complex composition[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 140−148. doi: 10.13779/j.cnki.issn1001-0076.2021.05.020

    [4]

    XIAOLONG Z, XIAOTIAN G, HAN YUEXIN, et al. Flotation of Iron Ores: A Review[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 42(3): 184−212.

    [5]

    WANG W, SNOECKX R, ZHANG X, et al. Modeling plasma−based CO2 and CH4 conversion in mixtures with N2, O2 and H2O: the bigger plasma chemistry picture[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8704−8723. doi: 10.1021/acs.jpcc.7b10619

    [6]

    ZHAO Y, HAN F, GUO L, et al. Flotation separation of hazardous polyvinyl chloride from waste plastics based on green plasma modification[J]. Journal of Cleaner Production, 2021, 318: 128569. doi: 10.1016/j.jclepro.2021.128569

    [7]

    CORREIA D M, NUNES-PEREIRA J, ALIKIN D, et al. Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment[J]. Polymer, 2019, 169: 138−147. doi: 10.1016/j.polymer.2019.02.042

    [8]

    KOZHONOV A, SAMSALIEV A, TOPORKOVA Y I. Studies on microwave-plasma treatment of froth flotation tailings[J]. Solid State Phenomena, 2020, 299: 1044−1051. doi: 10.4028/www.scientific.net/SSP.299.1044

    [9]

    RAN J, QIU X, HU Z, et al. Enhance flotation separation of arsenopyrite and pyrite by low-temperature oxygen plasma surface modification[J]. Applied Surface Science, 2019, 480: 1136−1146. doi: 10.1016/j.apsusc.2019.02.172

    [10]

    MAY F, GOCK E, VOGT V, et al. Plasma-modification of sulfides for optimizing froth-flotation properties[J]. Minerals Engineering, 2012, 35: 67−74. doi: 10.1016/j.mineng.2012.05.005

    [11]

    金英. 等离子体射流特性及在金属表面清洗中的应用[D]. 大连: 大连理工大学, 2016.

    JIN Y. The properties of plasma jet and its application on metal surface cleaning [D]. Dalian: Dalian University of Technology, 2016.

    [12]

    DONG B, DRIVER M S, EMESH I, et al. Surface chemistry and fundamental limitations on the plasma cleaning of metals[J]. Applied Surface Science, 2016, 384: 294−297. doi: 10.1016/j.apsusc.2016.05.082

    [13]

    胥萌, 晋伟, 周济, 等. 低温等离子体在矿物加工领域应用现状[J]. 煤炭科学技术, 2017, 45(9): 201−208. doi: 10.13199/j.cnki.cst.2017.09.033

    XU M, JIN W, ZHOU J, et al. Application status of low temperature plasma in mineral processing field[J]. Coal Science and Technology, 2017, 45(9): 201−208. doi: 10.13199/j.cnki.cst.2017.09.033

    [14]

    黄静颖. 大气压射流等离子体用于CO2和CH4转化的实验研究[D]. 杭州: 浙江大学, 2021.

    HUANG J Y. Experimental study on CO2 and CH4 conversion by using atmospheric pressure plasmatron[D]. Hangzhou: Zhejiang University, 2021.

    [15]

    马晗博. Mn3O4涂敷强化低温等离子体再生处理废活性炭[D]. 重庆: 重庆工商大学, 2021.

    Ma H B. Mn3O4 coating enhanced low temperature plasma regeneration treatment of waste activated carbon [D]. Chongqing: Chongqing University, 2021.

    [16]

    HE J, WEN X, WU L, et al. Dielectric barrier discharge plasma for nanomaterials: fabrication, modification and analytical applications [J]. TrAC Trends in Analytical Chemistry, 2022, 156.

    [17]

    LIN L, RUI L, LI C, et al. Study on CO2-based plasmas for surface modification of polytetrafluoroethylene and the wettability effects[J]. Journal of CO2 Utilization, 2021, 53: 101752. doi: 10.1016/j.jcou.2021.101752

    [18]

    魏钰坤, 廖海峰, 颜海涛, 等. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039−14044.

    WEI Y K, LIAO H F, YAN H T, et al. Surface modification of nano TiO2 powders by dielectric barrier discharge plasma assisted ball milling[J]. Materials Reports, 2020, 34(14): 14039−14044.

    [19]

    朱希峰. 介质阻挡放电低温等离子体脱除挥发性有机物的研究[D]. 北京: 华北电力大学(北京), 2021.

    ZHU X F. Research on removal of volatile organic compoundsby DBD nonthermal plasma [D]. Beijing: North China Electric Power University ( Beijing ), 2021.

    [20]

    LIN L, RUI L, TAO Y, et al. Surface modification of metal substrates using dielectric barrier discharge plasma and the wettability study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 138: 104467. doi: 10.1016/j.jtice.2022.104467

    [21]

    陈东. 大气压射流等离子体特性研究及其应用[D]. 广州: 广州大学, 2019.

    CHEN D. Study on characteristics of atmospheric pressure jet plasma and its application [D]. Guangzhou: Guangzhou University, 2019.

    [22]

    李文浩, 田朝, 冯绅绅, 等. 大气压等离子体射流装置及应用研究进展[J]. 真空科学与技术学报, 2018, 38(8): 695−707. doi: 10.13922/j.cnki.cjovst.2018.08.09

    LI W H, TIAN C, FENG S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 695−707. doi: 10.13922/j.cnki.cjovst.2018.08.09

    [23]

    NARIMISA M, ONYSHCHENKO Y, MORENT R, et al. Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases[J]. Polymer, 2021, 215: 123421. doi: 10.1016/j.polymer.2021.123421

    [24]

    朱珠. 微波等离子体设备及其在硫化钼复合材料表面改性的研究[D]. 上海: 上海工程技术大学, 2018.

    ZHU Z. Microwave plasma generator and its application of surface modification on molybdenum sulfide composites [D]. Shanghai: Shanghai University of Engineering Science, 2018.

    [25]

    TAMARGO-MARTÍNEZ K, VILLAR-RODIL S, MARTÍNEZ-ALONSO A, et al. Surface modification of high-surface area graphites by oxygen plasma treatments[J]. Applied Surface Science, 2022, 575: 151675. doi: 10.1016/j.apsusc.2021.151675

    [26]

    安晓明, 苟立, 何琨, 等. 微波等离子体改性对金刚石薄膜表面亲水性的影响[J]. 表面技术, 2009, 38(1): 14−16. doi: 10.16490/j.cnki.issn.1001-3660.2009.01.023

    AN X M, GOU L, HE K, et al. Effece of microwave plasma modification on the hydrophilic properties of diamondFilm[J]. Surface Technology, 2009, 38(1): 14−16. doi: 10.16490/j.cnki.issn.1001-3660.2009.01.023

    [27]

    STANISHEVSKY A V, WALOCK M J, CATLEDGE S A. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma[J]. Applied Surface Science, 2015, 357: 1403−1409. doi: 10.1016/j.apsusc.2015.09.251

    [28]

    WANG D, XU M, HE J, et al. Flotation of low rank coal using dodecane after pretreatment by dielectric barrier discharge (DBD) air plasma[J]. Fuel, 2019, 251: 543−550. doi: 10.1016/j.fuel.2019.04.062

    [29]

    李琛光, 王大鹏, 胥萌, 等. 低温等离子体改性技术对煤泥浮选效果的影响[J]. 煤炭科学技术, 2019, 47(9): 256−261. doi: 10.13199/j.cnki.cst.2019.09.033

    LI C G, WANG D P, XU M, et al. Effect of low temperature plasma modification technology on coal slime flotation[J]. Coal Science and Technology, 2019, 47(9): 256−261. doi: 10.13199/j.cnki.cst.2019.09.033

    [30]

    ZHEN K, ZHANG H, LI C, et al. Effect of oxidized diesel oil on the flotation response of the low-rank coal by plasma oxidation method[J]. Fuel, 2019, 245: 13−20. doi: 10.1016/j.fuel.2019.02.060

    [31]

    王大鹏, 李文秀, 王振飞, 等. 复配-等离子体协同制备低阶煤捕收剂研究[J/OL]. 煤炭学报, 2022, 1-7.

    WANG D P, LI W X, WANG Z F, et al. Flotation intensification of low-rank coal using a new collector prepared by composition and following plasma [J/OL]. Journal of china coal society, 2022,1-7. DOI: 10.13225/j.cnki.jccs.2022.1213.

    [32]

    WANG D, XU M, HE J, et al. Effects of low-temperature air plasma pretreatment on the surface properties of low-rank coal[J]. Powder Technology, 2018, 340: 227−233. doi: 10.1016/j.powtec.2018.09.019

    [33]

    HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66: 102−111.

    [34]

    RAN J, QIU X, HU Z, et al. Selective flotation of pyrite from arsenopyrite by low temperature oxygen plasma pre-treatment[J]. Minerals, 2018, 8(12): 568. doi: 10.3390/min8120568

    [35]

    XU D, AMETOV I, GRANO S R. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation[J]. Minerals Engineering, 2012, 39: 89−98. doi: 10.1016/j.mineng.2012.07.003

    [36]

    张晓亮. 微细粒赤铁矿絮凝浮选行为及机理研究[D]. 唐山: 华北理工大学, 2016.

    Zhang X L. The research on the behavior and mechanism of ultrafine hematite in the flocculation-flotation [D]. Tangshan: North China University of Science and Technology, 2016.

    [37]

    HUANG Y, HAN G, LIU J, et al. A facile disposal of bayer red mud based on selective flocculation desliming with organic humics[J]. J Hazard Mater, 2016, 301: 46−55. doi: 10.1016/j.jhazmat.2015.08.035

    [38]

    STEFANOVA M, KAMENAROV Z. Using atmospheric pressure plasma as a tool in the cleaning of icon paintings[J]. International Conference Florence Heri-Tech:The Future of Heritage Science and Technologies, 2020, 949(1): 012087.

    [39]

    MILLER K K, SHANCITA I, BHATTACHARIA S K, et al. Surface modifications of plasma treated aluminum particles and direct evidence for altered reactivity[J]. Materials & Design, 2021, 210: 110119.

    [40]

    PHAM P V. Cleaning of graphene surfaces by low-pressure air plasma[J]. R Soc Open Sci, 2018, 5(5): 172395. doi: 10.1098/rsos.172395

  • 加载中

(5)

计量
  • 文章访问数:  278
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2022-12-03
刊出日期:  2023-04-25

目录