-
摘要:
等离子体作为一种绿色环保的表面改性技术,因其操作简单、反应速度快、能耗低、工艺干法化等优良性能而备受人们关注。综述了等离子体的产生方式及其在矿物浮选领域中的应用,阐述了其在浮选中对矿物表面改性和药剂改性的作用机理,并展望了等离子体在矿物加工领域中的应用前景,以期为等离子体技术在矿产资源高效利用领域的推广应用提供参考。
Abstract:Plasma, a green and environmental friendly surface modification technology, has attracted more attention as its excellent properties, such as simple operation, rapid response, low energy consumption and dry process. In this paper, the producing method of plasma and its application in the field of mineral flotation were summarized, as well as the mechanism of its action on mineral and reagent modification in flotation, and the application of plasma in the mineral processing field was prospected. The review would provide a guidance for the popularization and application of plasma technology for efficient utilization of the mineral resources.
-
Key words:
- plasma /
- flotation /
- deslime /
- generation /
- application.
-
-
图 2 介质阻挡放电示意图[16]
Figure 2.
图 3 射流等离子体装置示意图[22]
Figure 3.
图 4 微波等离子体装置示意图[24]
Figure 4.
图 5 氧气等离子体在砷黄铁矿和黄铁矿表面处理过程[34]
Figure 5.
-
[1] 张添钧. 化学选矿技术在低品位矿石处理中的应用[J]. 有色矿冶, 2022, 38(1): 20−22. doi: 10.3969/j.issn.1007-967X.2022.01.005
ZHANG T J. The application of chemical beneficiation technology in the treatment of low grade ore[J]. Non-Ferrous Mining and Metallurgy, 2022, 38(1): 20−22. doi: 10.3969/j.issn.1007-967X.2022.01.005
[2] CHANGPING G, ZHIGANG Y, JIHUA Z, et al. Surface modification of ilmenite by a novel surfactant dodecyliminodimethylenediphosphoinc acid and its sequent influence on ilmenite floatability[J]. Separation Science and Technology, 2020, 55(2): 358−368.
[3] 杨光, 苏兴国, 马自飞, 等. 东鞍山贫杂铁矿石选矿技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 140−148. doi: 10.13779/j.cnki.issn1001-0076.2021.05.020
YANG G, SU X G, MA Z F, et al. Research status and development trend of beneficiation technology for Donganshan iron ore with low grade and complex composition[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 140−148. doi: 10.13779/j.cnki.issn1001-0076.2021.05.020
[4] XIAOLONG Z, XIAOTIAN G, HAN YUEXIN, et al. Flotation of Iron Ores: A Review[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 42(3): 184−212.
[5] WANG W, SNOECKX R, ZHANG X, et al. Modeling plasma−based CO2 and CH4 conversion in mixtures with N2, O2 and H2O: the bigger plasma chemistry picture[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8704−8723. doi: 10.1021/acs.jpcc.7b10619
[6] ZHAO Y, HAN F, GUO L, et al. Flotation separation of hazardous polyvinyl chloride from waste plastics based on green plasma modification[J]. Journal of Cleaner Production, 2021, 318: 128569. doi: 10.1016/j.jclepro.2021.128569
[7] CORREIA D M, NUNES-PEREIRA J, ALIKIN D, et al. Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment[J]. Polymer, 2019, 169: 138−147. doi: 10.1016/j.polymer.2019.02.042
[8] KOZHONOV A, SAMSALIEV A, TOPORKOVA Y I. Studies on microwave-plasma treatment of froth flotation tailings[J]. Solid State Phenomena, 2020, 299: 1044−1051. doi: 10.4028/www.scientific.net/SSP.299.1044
[9] RAN J, QIU X, HU Z, et al. Enhance flotation separation of arsenopyrite and pyrite by low-temperature oxygen plasma surface modification[J]. Applied Surface Science, 2019, 480: 1136−1146. doi: 10.1016/j.apsusc.2019.02.172
[10] MAY F, GOCK E, VOGT V, et al. Plasma-modification of sulfides for optimizing froth-flotation properties[J]. Minerals Engineering, 2012, 35: 67−74. doi: 10.1016/j.mineng.2012.05.005
[11] 金英. 等离子体射流特性及在金属表面清洗中的应用[D]. 大连: 大连理工大学, 2016.
JIN Y. The properties of plasma jet and its application on metal surface cleaning [D]. Dalian: Dalian University of Technology, 2016.
[12] DONG B, DRIVER M S, EMESH I, et al. Surface chemistry and fundamental limitations on the plasma cleaning of metals[J]. Applied Surface Science, 2016, 384: 294−297. doi: 10.1016/j.apsusc.2016.05.082
[13] 胥萌, 晋伟, 周济, 等. 低温等离子体在矿物加工领域应用现状[J]. 煤炭科学技术, 2017, 45(9): 201−208. doi: 10.13199/j.cnki.cst.2017.09.033
XU M, JIN W, ZHOU J, et al. Application status of low temperature plasma in mineral processing field[J]. Coal Science and Technology, 2017, 45(9): 201−208. doi: 10.13199/j.cnki.cst.2017.09.033
[14] 黄静颖. 大气压射流等离子体用于CO2和CH4转化的实验研究[D]. 杭州: 浙江大学, 2021.
HUANG J Y. Experimental study on CO2 and CH4 conversion by using atmospheric pressure plasmatron[D]. Hangzhou: Zhejiang University, 2021.
[15] 马晗博. Mn3O4涂敷强化低温等离子体再生处理废活性炭[D]. 重庆: 重庆工商大学, 2021.
Ma H B. Mn3O4 coating enhanced low temperature plasma regeneration treatment of waste activated carbon [D]. Chongqing: Chongqing University, 2021.
[16] HE J, WEN X, WU L, et al. Dielectric barrier discharge plasma for nanomaterials: fabrication, modification and analytical applications [J]. TrAC Trends in Analytical Chemistry, 2022, 156.
[17] LIN L, RUI L, LI C, et al. Study on CO2-based plasmas for surface modification of polytetrafluoroethylene and the wettability effects[J]. Journal of CO2 Utilization, 2021, 53: 101752. doi: 10.1016/j.jcou.2021.101752
[18] 魏钰坤, 廖海峰, 颜海涛, 等. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039−14044.
WEI Y K, LIAO H F, YAN H T, et al. Surface modification of nano TiO2 powders by dielectric barrier discharge plasma assisted ball milling[J]. Materials Reports, 2020, 34(14): 14039−14044.
[19] 朱希峰. 介质阻挡放电低温等离子体脱除挥发性有机物的研究[D]. 北京: 华北电力大学(北京), 2021.
ZHU X F. Research on removal of volatile organic compoundsby DBD nonthermal plasma [D]. Beijing: North China Electric Power University ( Beijing ), 2021.
[20] LIN L, RUI L, TAO Y, et al. Surface modification of metal substrates using dielectric barrier discharge plasma and the wettability study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 138: 104467. doi: 10.1016/j.jtice.2022.104467
[21] 陈东. 大气压射流等离子体特性研究及其应用[D]. 广州: 广州大学, 2019.
CHEN D. Study on characteristics of atmospheric pressure jet plasma and its application [D]. Guangzhou: Guangzhou University, 2019.
[22] 李文浩, 田朝, 冯绅绅, 等. 大气压等离子体射流装置及应用研究进展[J]. 真空科学与技术学报, 2018, 38(8): 695−707. doi: 10.13922/j.cnki.cjovst.2018.08.09
LI W H, TIAN C, FENG S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 695−707. doi: 10.13922/j.cnki.cjovst.2018.08.09
[23] NARIMISA M, ONYSHCHENKO Y, MORENT R, et al. Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases[J]. Polymer, 2021, 215: 123421. doi: 10.1016/j.polymer.2021.123421
[24] 朱珠. 微波等离子体设备及其在硫化钼复合材料表面改性的研究[D]. 上海: 上海工程技术大学, 2018.
ZHU Z. Microwave plasma generator and its application of surface modification on molybdenum sulfide composites [D]. Shanghai: Shanghai University of Engineering Science, 2018.
[25] TAMARGO-MARTÍNEZ K, VILLAR-RODIL S, MARTÍNEZ-ALONSO A, et al. Surface modification of high-surface area graphites by oxygen plasma treatments[J]. Applied Surface Science, 2022, 575: 151675. doi: 10.1016/j.apsusc.2021.151675
[26] 安晓明, 苟立, 何琨, 等. 微波等离子体改性对金刚石薄膜表面亲水性的影响[J]. 表面技术, 2009, 38(1): 14−16. doi: 10.16490/j.cnki.issn.1001-3660.2009.01.023
AN X M, GOU L, HE K, et al. Effece of microwave plasma modification on the hydrophilic properties of diamondFilm[J]. Surface Technology, 2009, 38(1): 14−16. doi: 10.16490/j.cnki.issn.1001-3660.2009.01.023
[27] STANISHEVSKY A V, WALOCK M J, CATLEDGE S A. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma[J]. Applied Surface Science, 2015, 357: 1403−1409. doi: 10.1016/j.apsusc.2015.09.251
[28] WANG D, XU M, HE J, et al. Flotation of low rank coal using dodecane after pretreatment by dielectric barrier discharge (DBD) air plasma[J]. Fuel, 2019, 251: 543−550. doi: 10.1016/j.fuel.2019.04.062
[29] 李琛光, 王大鹏, 胥萌, 等. 低温等离子体改性技术对煤泥浮选效果的影响[J]. 煤炭科学技术, 2019, 47(9): 256−261. doi: 10.13199/j.cnki.cst.2019.09.033
LI C G, WANG D P, XU M, et al. Effect of low temperature plasma modification technology on coal slime flotation[J]. Coal Science and Technology, 2019, 47(9): 256−261. doi: 10.13199/j.cnki.cst.2019.09.033
[30] ZHEN K, ZHANG H, LI C, et al. Effect of oxidized diesel oil on the flotation response of the low-rank coal by plasma oxidation method[J]. Fuel, 2019, 245: 13−20. doi: 10.1016/j.fuel.2019.02.060
[31] 王大鹏, 李文秀, 王振飞, 等. 复配-等离子体协同制备低阶煤捕收剂研究[J/OL]. 煤炭学报, 2022, 1-7.
WANG D P, LI W X, WANG Z F, et al. Flotation intensification of low-rank coal using a new collector prepared by composition and following plasma [J/OL]. Journal of china coal society, 2022,1-7. DOI: 10.13225/j.cnki.jccs.2022.1213.
[32] WANG D, XU M, HE J, et al. Effects of low-temperature air plasma pretreatment on the surface properties of low-rank coal[J]. Powder Technology, 2018, 340: 227−233. doi: 10.1016/j.powtec.2018.09.019
[33] HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66: 102−111.
[34] RAN J, QIU X, HU Z, et al. Selective flotation of pyrite from arsenopyrite by low temperature oxygen plasma pre-treatment[J]. Minerals, 2018, 8(12): 568. doi: 10.3390/min8120568
[35] XU D, AMETOV I, GRANO S R. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation[J]. Minerals Engineering, 2012, 39: 89−98. doi: 10.1016/j.mineng.2012.07.003
[36] 张晓亮. 微细粒赤铁矿絮凝浮选行为及机理研究[D]. 唐山: 华北理工大学, 2016.
Zhang X L. The research on the behavior and mechanism of ultrafine hematite in the flocculation-flotation [D]. Tangshan: North China University of Science and Technology, 2016.
[37] HUANG Y, HAN G, LIU J, et al. A facile disposal of bayer red mud based on selective flocculation desliming with organic humics[J]. J Hazard Mater, 2016, 301: 46−55. doi: 10.1016/j.jhazmat.2015.08.035
[38] STEFANOVA M, KAMENAROV Z. Using atmospheric pressure plasma as a tool in the cleaning of icon paintings[J]. International Conference Florence Heri-Tech:The Future of Heritage Science and Technologies, 2020, 949(1): 012087.
[39] MILLER K K, SHANCITA I, BHATTACHARIA S K, et al. Surface modifications of plasma treated aluminum particles and direct evidence for altered reactivity[J]. Materials & Design, 2021, 210: 110119.
[40] PHAM P V. Cleaning of graphene surfaces by low-pressure air plasma[J]. R Soc Open Sci, 2018, 5(5): 172395. doi: 10.1098/rsos.172395
-