浮选过程诱导时间研究进展

印万忠, 田道来, 谢禹, 薛铭, 姚金. 浮选过程诱导时间研究进展[J]. 矿产保护与利用, 2023, 43(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2023.03.001
引用本文: 印万忠, 田道来, 谢禹, 薛铭, 姚金. 浮选过程诱导时间研究进展[J]. 矿产保护与利用, 2023, 43(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2023.03.001
YIN Wanzhong, TIAN Daolai, XIE Yu, XUE Ming, YAO Jin. Research Progress of Induction Time in Flotation Process[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2023.03.001
Citation: YIN Wanzhong, TIAN Daolai, XIE Yu, XUE Ming, YAO Jin. Research Progress of Induction Time in Flotation Process[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2023.03.001

浮选过程诱导时间研究进展

详细信息
    作者简介: 印万忠(1970—),男,浙江杭州人,博士,教授,主要从事矿物浮选理论与技术研究,E-mail:yinwanzhong@mail.neu.edu.cn; 田道来(1998—),男,江苏徐州人,硕士研究生。现就读于东北大学矿物加工工程专业,师从印万忠教授,主要从事界面润湿和浮选基础理论研究。2021年荣获一等学业奖学金,2022年荣获一等学业奖学金和海王奖学金
    通讯作者: 田道来(1998—),男,江苏徐州人,硕士研究生,主要从事界面润湿和浮选基础理论研究,E-mail:tiandaolai@163.com
  • 中图分类号: TD91;TD923

Research Progress of Induction Time in Flotation Process

More Information
  • 浮选具有分选效率高和应用范围广等优势。诱导时间(指气泡和颗粒从碰撞到黏附所需时间)对于浮选过程起着至关重要的作用。通常而言,诱导时间越短,气泡和颗粒越容易黏附,矿物的可浮性越好。阐述了诱导时间的定义、测试方法及测试技术的发展,系统分析了近年来诱导时间影响因素(包括气泡特性、颗粒性质和溶液环境)的研究进展。综合分析认为诱导时间是影响浮选效果的重要参数,可以通过优化矿物颗粒表面特性和浮选溶液条件等措施来缩短气泡−颗粒诱导时间,进而提高矿物的浮选回收率。

  • 加载中
  • 图 1  诱导时间测试仪原理[10-11]

    Figure 1. 

    图 2  气泡−颗粒黏附过程[18]

    Figure 2. 

    图 3  煤样的诱导时间随气泡形变量Δh的变化[13]

    Figure 3. 

    图 4  表面粗糙度对炼焦煤和无烟煤诱导时间的影响[17]

    Figure 4. 

    图 5  DAH浓度对石英颗粒诱导时间和浮选回收率的影响(pH=6.6)[43]

    Figure 5. 

    图 6  不同电解质溶液中离子浓度对诱导时间的影响[53]

    Figure 6. 

  • [1]

    魏德洲. 固体物料分选学: 第3版[M]. 北京: 冶金工业出版社, 2015.

    WEI D Z. Solid material selection: 3rd edition[M]. Beijing: Metallurgical Industry Press, 2015.

    [2]

    印万忠, 白丽梅, 荣令坤. 浮游选矿技术问答[M]. 北京: 化学工业出版社, 2012.

    YIN W Z, BAI L M, RONG L K. Flotation technology question answering[M]. Beijing: Chemical Industry Press, 2012.

    [3]

    张宁宁. 浮选体系中铝硅矿物-气泡作用机制及粘附行为调控研究[D]. 徐州: 中国矿业大学, 2018.

    ZHANG N N. Study on the interaction mechanism of alumina/silicon minerals-bubbles and regulation of adhesion behavior in the flotation system[D]. Xuzhou: China University of Mining and Technology, 2018.

    [4]

    谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.

    XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2016.

    [5]

    NGUYEN A, SCHULZE H, RALSTON J. Elementary steps in particle-bubble attachment[J]. International Journal of Mineral Processing, 1997, 51(1): 183−195.

    [6]

    WANG W X, ZHOU Z A, NANDAKUMAR K, et al. An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions[J]. International Journal of Mineral Processing, 2004, 75(1): 69−82.

    [7]

    VERRELLI D I, ALBIJANIC B. A comparison of methods for measuring the induction time for bubble-particle attachment[J]. Minerals Engineering, 2015, 80: 8−13. doi: 10.1016/j.mineng.2015.06.011

    [8]

    SVEN-NILSSON I. Effect of contact time between mineral and air bubbles on flotation[J]. Kolloid-z, 1934, 69(2): 230−232. doi: 10.1007/BF01433238

    [9]

    EIGELES M A, VOLOVA M L. Kinetic investigation of effect of contact time, temperature and surface condition on the adhesion of bubble to mineral surfaces[J]. Proceedings, 1960: 271.

    [10]

    GU G X, XU Z H, NANDAKUMAR K, et al. Effects of physical environment on induction time of air-bitumen attachment[J]. International Journal of Mineral Processing, 2003, 69(1): 235−250.

    [11]

    陈亮. 溶液化学特性对低阶煤-油泡矿化行为的影响与调控研究[D]. 徐州: 中国矿业大学, 2018.

    CHEN L. Research on the effect and regulation of solution chemical characteristics on the mineralization behavior between low rank coal and oily bubble[D]. Xuzhou: China University of Mining and Technology, 2018.

    [12]

    安茂燕. 脂肪酸-烃类油浮选低阶煤协同作用机理研究[D]. 徐州: 中国矿业大学, 2019.

    AN M Y. Study on synergistic mechanism of fatty acid-hydrocarbon oil for low rank coal flotation[D]. Xuzhou: China University of Mining and Technology, 2019.

    [13]

    陈松降, 陶秀祥, 杨彦成, 等. 神东低阶煤浮选诱导时间的实验研究[J]. 煤炭技术, 2016, 35(7): 319−321.

    CHEN S J, TAO X X, YANG Y C, et al. Experimental study on induction time of Shendong low rank coal[J]. Coal Technology, 2016, 35(7): 319−321.

    [14]

    邢耀文. 颗粒气泡间相互作用力及液膜薄化动力学研究[D]. 徐州: 中国矿业大学, 2018.

    XING Y W. Interaction force between bubble and particle and the thinning dynamics of the thin liquid film[D]. Xuzhou: China University of Mining and Technology, 2018.

    [15]

    王让, 陶秀祥, 陈松降, 等. 超声波处理对褐煤黏附及浮选过程的强化作用[J]. 中国科技论文, 2021, 16(9): 992−998.

    WANG R, TAO X X, CHEN S J, et al. Strengthening effect of ultrasonic treatment on adhesion and flotation process of lignite[J]. China Sciencepaper, 2021, 16(9): 992−998.

    [16]

    XIA W C. Role of surface roughness in the attachment time between air bubble and flat ultra−low−ash coal surface[J]. International Journal of Mineral Processing, 2017, 168: 19−24. doi: 10.1016/j.minpro.2017.09.006

    [17]

    CHEN Y R, XIA W C, XIE G Y. Contact angle and induction time of air bubble on flat coal surface of different roughness[J]. Fuel, 2018, 222(JUN.15): 35−41.

    [18]

    陈松降, 陶秀祥, 何环, 等. 油泡-低阶煤颗粒间的黏附特性[J]. 煤炭学报, 2017, 42(3): 745−752.

    CHEN S J, TAO X X, HE H, et al. Attachment characteristics between oily bubbles and low rank coal particles[J]. Journal of China Coal Society, 2017, 42(3): 745−752.

    [19]

    JE J, KWON J, CHO H. Simulation of bubble−plate attachment and estimation of induction time using smoothed particle hydrodynamics[J]. Minerals Engineering, 2020, 149(C): 106227.

    [20]

    曾维能. 微纳米气泡对微细粒锡石浮选的影响及其机理[D]. 武汉: 武汉理工大学, 2021.

    ZENG W N. Effect of micro−nano bubbles on fine cassiterite flotation and its mechanism[D]. Wuhan: Wuhan University of Technology, 2021.

    [21]

    王市委, 吕洪强, 陈松降, 等. 低阶煤颗粒−气/油泡间的诱导时间研究[J]. 煤炭学报, 2020, 45(2): 786−792.

    WANG S W, LV H Q, CHEN S J, et al. Investigation of the induction times between low rank coal particles and air/oily bubbles[J]. Journal of China Coal Society, 2020, 45(2): 786−792.

    [22]

    陈泉源, 张泾生, 王淀佐. 气泡与颗粒作用研究新进展[J]. 国外金属矿选矿, 2001, 38(2): 17−19,24.

    CHEN Q Y, ZHANG J S, WANG D Z. Advances in the study of interaction between bubbles and particles[J]. Metallic Ore Dressing Abroad, 2001, 38(2): 17−19,24.

    [23]

    ZHOU Y, ALBIJANIC B, PANJIPOUR R, et al. Understanding of attachment efficiency and induction time between bubbles and pyrite particles in flotation[J]. Advanced Powder Technology, 2021, 32(2): 424−431. doi: 10.1016/j.apt.2020.12.021

    [24]

    ZHANG Z J, ZHUANG L, WANG L, et al. The relationship among contact angle, induction time and flotation recovery of coal[J]. International Journal of Coal Preparation and Utilization, 2018, 41(6): 1−9.

    [25]

    FAHAD M K, PRAKASH R, MAJUMDER S K, et al. Investigation of the induction time and recovery in a flotation column: A kinetic analysis[J]. Separation Science and Technology, 2022, 57(18): 2937−2954. doi: 10.1080/01496395.2022.2084629

    [26]

    BU X N, CHEN Y R, MA G X, et al. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time[J]. Advanced Powder Technology, 2019, 30(11): 2703−2711. doi: 10.1016/j.apt.2019.08.016

    [27]

    马广喜. 颗粒形状对颗粒与气泡粘附-脱附行为的影响机理研究[D]. 徐州: 中国矿业大学, 2021.

    MA G X. Influence mechanism of particle shape on bubble−particle attachment and detachment behavior[D]. Xuzhou: China University of Mining and Technology, 2021.

    [28]

    VERRELLI D I, BRUCKARD W J, KOH P T, et al. Particle shape effects in flotation. Part 1: Microscale experimental observations[J]. Minerals Engineering, 2014, 58: 80−89. doi: 10.1016/j.mineng.2014.01.004

    [29]

    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society, 1936, 28(8): 988−994.

    [30]

    刘敏, 张友飞, 郭芳余, 等. 表面粗糙度对煤泥可浮性的影响[J]. 煤炭科学技术, 2019, 47(10): 253−258.

    LIU M, ZHANG Y F, GUO F Y, et al. Effect of surface roughness on floatability of coal slime[J]. Coal Science and Technology, 2019, 47(10): 253−258.

    [31]

    胡海山. 低阶煤颗粒-气泡诱导时间测试及表面改性[J]. 中国科技论文, 2019, 14(10): 1055−1059.

    HU H S. Low-rank coal particle-bubble induction time test and surface modification[J]. China Sciencepaper, 2019, 14(10): 1055−1059.

    [32]

    MAO Y Q, XIE G Y, QI X H, et al. Effects of ultrasonic pretreatment on particle size and surface topography of lignite and its relationship to flotation response[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 43(10): 1−9.

    [33]

    LI M, XING Y W, ZHU C Y, et al. Effect of roughness on wettability and floatability: Based on wetting film drainage between bubbles and solid surfaces[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1389−1396. doi: 10.1016/j.ijmst.2022.09.013

    [34]

    HASSAS B V, CALISKAN H, GUVEN O, et al. Effect of roughness and shape factor on flotation characteristics of glass beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492: 88−99.

    [35]

    ZAWALA J, DRZYMALA J, MALYSA K. An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble[J]. International Journal of Mineral Processing, 2008, 88(3): 72−79.

    [36]

    桂东骄. 不同溶液化学条件下煤与油泡的粘附过程及液膜薄化特性研究[D]. 徐州: 中国矿业大学, 2020.

    GUI D J. Study on attachment between coal and oily bubbles and the thinning characteristics of wetting film under various solution chemistry conditions[D]. Xuzhou: China University of Mining and Technology, 2020.

    [37]

    ZHOU F, WANG L X, XU Z H, et al. Interaction of reactive oily bubble in flotation of bastnaesite[J]. Journal of Rare Earths, 2014, 32(8): 772−778. doi: 10.1016/S1002-0721(14)60139-3

    [38]

    胡熙庚. 浮选理论与工艺[M]. 长沙: 中南工业大学出版社, 1991.

    HU X G. Flotation theory and technology[M]. Changsha: Central South University of Technology Press, 1991.

    [39]

    ALBIJANIC B, OZDEMIR O, NGUYEN A V, et al. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation[J]. Advances in Colloid and Interface Science, 2010, 159(1): 1−21. doi: 10.1016/j.cis.2010.04.003

    [40]

    LI M, XIA Y C, ZHANG Y F, et al. Mechanism of shale oil as an effective collector for oxidized coal flotation: From bubble−particle attachment and detachment point of view[J]. Fuel, 2019, 255(C): 115885.

    [41]

    蒋善勇, 夏文成, 李懿江, 等. 油酸钠联合六偏磷酸钠浮选不黏煤的机理研究[J]. 煤炭转化, 2020, 43(6): 6−65.

    JIANG S Y, XIA W C, LI Y J, et al. Mechanism of non−caking coal flotation using sodium oleate and sodium hexametaphosphate[J]. Coal Conversion, 2020, 43(6): 6−65.

    [42]

    邬丛珊. 油类捕收剂对煤粒气泡间相互作用行为的影响机理研究[D]. 太原: 太原理工大学, 2021.

    WU C S. Study on the effect of oil collector on the interaction behavior between coal particle and bubble and the related mechanism[D]. Taiyuan: Taiyuan University of Technology, 2021.

    [43]

    YOON R-H, YORDAN J L. Induction time measurements for the quartz-amine flotation system[J]. Journal of Colloid and Interface Science, 1991, 141(2): 374−383. doi: 10.1016/0021-9797(91)90333-4

    [44]

    程雅丽. 煤泥浮选中捕收剂与起泡剂交互作用机理的研究[D]. 北京: 中国矿业大学(北京), 2021.

    CHENG Y L. Study on the interaction mechanism of collector and frother in slime flotation[D]. Beijing: China University of Mining and Technology(Beijing), 2021.

    [45]

    郝晓栋. 复配捕收剂诱导的油泡形成机制及对低阶煤浮选的影响研究[D]. 徐州: 中国矿业大学, 2021.

    HAO X D. Formation mechanism of oil bubble induced by compound collector and its effect on flotation of low rank coal[D]. Xuzhou: China University of Mining and Technology, 2021.

    [46]

    RAMIREZ A, GUTIERREZ L, LASKOWSKI J S. Use of “oily bubbles” and dispersants in flotation of molybdenite in fresh and seawater[J]. Minerals Engineering, 2020, 148(C): 1−9.

    [47]

    胡海山. 低阶煤-气/油泡的矿化过程特征及其活性油泡浮选过程强化研究[D]. 徐州: 中国矿业大学, 2020.

    HU H S. Mineralization characteristics of low rank coal−gas/oil bubbles and the flotation process intensification by activated oil bubble[D]. Xuzhou: China University of Mining and Technology, 2020.

    [48]

    艾光华, 蔡鑫, 毕康颖, 等. 金属离子对矿物浮选行为影响的研究进展[J]. 有色金属科学与工程, 2017, 8(6): 70−74.

    AI G H, CAI X, BI K Y, et al. Research progress on the effect of matal ions on mineral flotation behavior[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 70−74.

    [49]

    高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868.

    GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868.

    [50]

    FAN C W, HU Y C, MARKUSZEWSKI R, et al. Role of induction time and other properties in the recovery of coal from aqueous suspensions by agglomeration with heptane[J]. Energy Fuels, 1989, 3(3): 376−381. doi: 10.1021/ef00015a021

    [51]

    CAO S M, CAO Y J, MA Z L, et al. Metal ion release in bastnaesite flotation system and implications for flotation[J]. Minerals, 2018, 8(5): 203. doi: 10.3390/min8050203

    [52]

    ZHANG Z J, LIU J T. Effect of calcium ions on induction time between a coal particle and air bubble[J]. International Journal of Coal Preparation and Utilization, 2015, 35(1): 31−38. doi: 10.1080/19392699.2014.934984

    [53]

    陈亮, 陈松降, 陶秀祥, 等. 电解质对低阶煤油泡浮选矿化过程的影响[J]. 煤炭学报, 2018, 43(5): 1432−1439.

    CHEN L, CHEN S J, TAO X X, et al. Effects of electrolytes on the mineralization process in oily−bubble flotation of low rank coal[J]. Journal of China Coal Society, 2018, 43(5): 1432−1439.

  • 加载中

(6)

计量
  • 文章访问数:  1017
  • PDF下载数:  86
  • 施引文献:  0
出版历程
收稿日期:  2023-04-20
刊出日期:  2023-06-15

目录