-
摘要:
浮选具有分选效率高和应用范围广等优势。诱导时间(指气泡和颗粒从碰撞到黏附所需时间)对于浮选过程起着至关重要的作用。通常而言,诱导时间越短,气泡和颗粒越容易黏附,矿物的可浮性越好。阐述了诱导时间的定义、测试方法及测试技术的发展,系统分析了近年来诱导时间影响因素(包括气泡特性、颗粒性质和溶液环境)的研究进展。综合分析认为诱导时间是影响浮选效果的重要参数,可以通过优化矿物颗粒表面特性和浮选溶液条件等措施来缩短气泡−颗粒诱导时间,进而提高矿物的浮选回收率。
Abstract:Flotation has the advantages of high separation efficiency and wide application range. The induction time refers to the time required for bubble and particle from collision to adhesion, which plays a crucial role in the flotation process. In general, the shorter the induction time, the easier the adhesion between bubble and particle, and the better the floatability of minerals. The definition, testing methods, and development of testing techniques of induction time were introduced, and the research progress of influencing factors of induction time (including bubble characteristics, particle properties and solution environment) in recent years was systematically analyzed. Through comprehensive analysis, it is believed that the induction time is an important parameter that affects the flotation efficiency. Measures such as optimizing the surface characteristics of mineral particles and flotation solution conditions can be taken to shorten the bubble-particle induction time, so as to improve the flotation recovery of minerals.
-
Key words:
- induction time /
- flotation /
- bubble /
- particle /
- attachment
-
-
图 2 气泡−颗粒黏附过程[18]
Figure 2.
图 3 煤样的诱导时间随气泡形变量Δh的变化[13]
Figure 3.
图 4 表面粗糙度对炼焦煤和无烟煤诱导时间的影响[17]
Figure 4.
图 5 DAH浓度对石英颗粒诱导时间和浮选回收率的影响(pH=6.6)[43]
Figure 5.
图 6 不同电解质溶液中离子浓度对诱导时间的影响[53]
Figure 6.
-
[1] 魏德洲. 固体物料分选学: 第3版[M]. 北京: 冶金工业出版社, 2015.
WEI D Z. Solid material selection: 3rd edition[M]. Beijing: Metallurgical Industry Press, 2015.
[2] 印万忠, 白丽梅, 荣令坤. 浮游选矿技术问答[M]. 北京: 化学工业出版社, 2012.
YIN W Z, BAI L M, RONG L K. Flotation technology question answering[M]. Beijing: Chemical Industry Press, 2012.
[3] 张宁宁. 浮选体系中铝硅矿物-气泡作用机制及粘附行为调控研究[D]. 徐州: 中国矿业大学, 2018.
ZHANG N N. Study on the interaction mechanism of alumina/silicon minerals-bubbles and regulation of adhesion behavior in the flotation system[D]. Xuzhou: China University of Mining and Technology, 2018.
[4] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.
XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2016.
[5] NGUYEN A, SCHULZE H, RALSTON J. Elementary steps in particle-bubble attachment[J]. International Journal of Mineral Processing, 1997, 51(1): 183−195.
[6] WANG W X, ZHOU Z A, NANDAKUMAR K, et al. An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions[J]. International Journal of Mineral Processing, 2004, 75(1): 69−82.
[7] VERRELLI D I, ALBIJANIC B. A comparison of methods for measuring the induction time for bubble-particle attachment[J]. Minerals Engineering, 2015, 80: 8−13. doi: 10.1016/j.mineng.2015.06.011
[8] SVEN-NILSSON I. Effect of contact time between mineral and air bubbles on flotation[J]. Kolloid-z, 1934, 69(2): 230−232. doi: 10.1007/BF01433238
[9] EIGELES M A, VOLOVA M L. Kinetic investigation of effect of contact time, temperature and surface condition on the adhesion of bubble to mineral surfaces[J]. Proceedings, 1960: 271.
[10] GU G X, XU Z H, NANDAKUMAR K, et al. Effects of physical environment on induction time of air-bitumen attachment[J]. International Journal of Mineral Processing, 2003, 69(1): 235−250.
[11] 陈亮. 溶液化学特性对低阶煤-油泡矿化行为的影响与调控研究[D]. 徐州: 中国矿业大学, 2018.
CHEN L. Research on the effect and regulation of solution chemical characteristics on the mineralization behavior between low rank coal and oily bubble[D]. Xuzhou: China University of Mining and Technology, 2018.
[12] 安茂燕. 脂肪酸-烃类油浮选低阶煤协同作用机理研究[D]. 徐州: 中国矿业大学, 2019.
AN M Y. Study on synergistic mechanism of fatty acid-hydrocarbon oil for low rank coal flotation[D]. Xuzhou: China University of Mining and Technology, 2019.
[13] 陈松降, 陶秀祥, 杨彦成, 等. 神东低阶煤浮选诱导时间的实验研究[J]. 煤炭技术, 2016, 35(7): 319−321.
CHEN S J, TAO X X, YANG Y C, et al. Experimental study on induction time of Shendong low rank coal[J]. Coal Technology, 2016, 35(7): 319−321.
[14] 邢耀文. 颗粒气泡间相互作用力及液膜薄化动力学研究[D]. 徐州: 中国矿业大学, 2018.
XING Y W. Interaction force between bubble and particle and the thinning dynamics of the thin liquid film[D]. Xuzhou: China University of Mining and Technology, 2018.
[15] 王让, 陶秀祥, 陈松降, 等. 超声波处理对褐煤黏附及浮选过程的强化作用[J]. 中国科技论文, 2021, 16(9): 992−998.
WANG R, TAO X X, CHEN S J, et al. Strengthening effect of ultrasonic treatment on adhesion and flotation process of lignite[J]. China Sciencepaper, 2021, 16(9): 992−998.
[16] XIA W C. Role of surface roughness in the attachment time between air bubble and flat ultra−low−ash coal surface[J]. International Journal of Mineral Processing, 2017, 168: 19−24. doi: 10.1016/j.minpro.2017.09.006
[17] CHEN Y R, XIA W C, XIE G Y. Contact angle and induction time of air bubble on flat coal surface of different roughness[J]. Fuel, 2018, 222(JUN.15): 35−41.
[18] 陈松降, 陶秀祥, 何环, 等. 油泡-低阶煤颗粒间的黏附特性[J]. 煤炭学报, 2017, 42(3): 745−752.
CHEN S J, TAO X X, HE H, et al. Attachment characteristics between oily bubbles and low rank coal particles[J]. Journal of China Coal Society, 2017, 42(3): 745−752.
[19] JE J, KWON J, CHO H. Simulation of bubble−plate attachment and estimation of induction time using smoothed particle hydrodynamics[J]. Minerals Engineering, 2020, 149(C): 106227.
[20] 曾维能. 微纳米气泡对微细粒锡石浮选的影响及其机理[D]. 武汉: 武汉理工大学, 2021.
ZENG W N. Effect of micro−nano bubbles on fine cassiterite flotation and its mechanism[D]. Wuhan: Wuhan University of Technology, 2021.
[21] 王市委, 吕洪强, 陈松降, 等. 低阶煤颗粒−气/油泡间的诱导时间研究[J]. 煤炭学报, 2020, 45(2): 786−792.
WANG S W, LV H Q, CHEN S J, et al. Investigation of the induction times between low rank coal particles and air/oily bubbles[J]. Journal of China Coal Society, 2020, 45(2): 786−792.
[22] 陈泉源, 张泾生, 王淀佐. 气泡与颗粒作用研究新进展[J]. 国外金属矿选矿, 2001, 38(2): 17−19,24.
CHEN Q Y, ZHANG J S, WANG D Z. Advances in the study of interaction between bubbles and particles[J]. Metallic Ore Dressing Abroad, 2001, 38(2): 17−19,24.
[23] ZHOU Y, ALBIJANIC B, PANJIPOUR R, et al. Understanding of attachment efficiency and induction time between bubbles and pyrite particles in flotation[J]. Advanced Powder Technology, 2021, 32(2): 424−431. doi: 10.1016/j.apt.2020.12.021
[24] ZHANG Z J, ZHUANG L, WANG L, et al. The relationship among contact angle, induction time and flotation recovery of coal[J]. International Journal of Coal Preparation and Utilization, 2018, 41(6): 1−9.
[25] FAHAD M K, PRAKASH R, MAJUMDER S K, et al. Investigation of the induction time and recovery in a flotation column: A kinetic analysis[J]. Separation Science and Technology, 2022, 57(18): 2937−2954. doi: 10.1080/01496395.2022.2084629
[26] BU X N, CHEN Y R, MA G X, et al. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time[J]. Advanced Powder Technology, 2019, 30(11): 2703−2711. doi: 10.1016/j.apt.2019.08.016
[27] 马广喜. 颗粒形状对颗粒与气泡粘附-脱附行为的影响机理研究[D]. 徐州: 中国矿业大学, 2021.
MA G X. Influence mechanism of particle shape on bubble−particle attachment and detachment behavior[D]. Xuzhou: China University of Mining and Technology, 2021.
[28] VERRELLI D I, BRUCKARD W J, KOH P T, et al. Particle shape effects in flotation. Part 1: Microscale experimental observations[J]. Minerals Engineering, 2014, 58: 80−89. doi: 10.1016/j.mineng.2014.01.004
[29] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society, 1936, 28(8): 988−994.
[30] 刘敏, 张友飞, 郭芳余, 等. 表面粗糙度对煤泥可浮性的影响[J]. 煤炭科学技术, 2019, 47(10): 253−258.
LIU M, ZHANG Y F, GUO F Y, et al. Effect of surface roughness on floatability of coal slime[J]. Coal Science and Technology, 2019, 47(10): 253−258.
[31] 胡海山. 低阶煤颗粒-气泡诱导时间测试及表面改性[J]. 中国科技论文, 2019, 14(10): 1055−1059.
HU H S. Low-rank coal particle-bubble induction time test and surface modification[J]. China Sciencepaper, 2019, 14(10): 1055−1059.
[32] MAO Y Q, XIE G Y, QI X H, et al. Effects of ultrasonic pretreatment on particle size and surface topography of lignite and its relationship to flotation response[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 43(10): 1−9.
[33] LI M, XING Y W, ZHU C Y, et al. Effect of roughness on wettability and floatability: Based on wetting film drainage between bubbles and solid surfaces[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1389−1396. doi: 10.1016/j.ijmst.2022.09.013
[34] HASSAS B V, CALISKAN H, GUVEN O, et al. Effect of roughness and shape factor on flotation characteristics of glass beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492: 88−99.
[35] ZAWALA J, DRZYMALA J, MALYSA K. An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble[J]. International Journal of Mineral Processing, 2008, 88(3): 72−79.
[36] 桂东骄. 不同溶液化学条件下煤与油泡的粘附过程及液膜薄化特性研究[D]. 徐州: 中国矿业大学, 2020.
GUI D J. Study on attachment between coal and oily bubbles and the thinning characteristics of wetting film under various solution chemistry conditions[D]. Xuzhou: China University of Mining and Technology, 2020.
[37] ZHOU F, WANG L X, XU Z H, et al. Interaction of reactive oily bubble in flotation of bastnaesite[J]. Journal of Rare Earths, 2014, 32(8): 772−778. doi: 10.1016/S1002-0721(14)60139-3
[38] 胡熙庚. 浮选理论与工艺[M]. 长沙: 中南工业大学出版社, 1991.
HU X G. Flotation theory and technology[M]. Changsha: Central South University of Technology Press, 1991.
[39] ALBIJANIC B, OZDEMIR O, NGUYEN A V, et al. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation[J]. Advances in Colloid and Interface Science, 2010, 159(1): 1−21. doi: 10.1016/j.cis.2010.04.003
[40] LI M, XIA Y C, ZHANG Y F, et al. Mechanism of shale oil as an effective collector for oxidized coal flotation: From bubble−particle attachment and detachment point of view[J]. Fuel, 2019, 255(C): 115885.
[41] 蒋善勇, 夏文成, 李懿江, 等. 油酸钠联合六偏磷酸钠浮选不黏煤的机理研究[J]. 煤炭转化, 2020, 43(6): 6−65.
JIANG S Y, XIA W C, LI Y J, et al. Mechanism of non−caking coal flotation using sodium oleate and sodium hexametaphosphate[J]. Coal Conversion, 2020, 43(6): 6−65.
[42] 邬丛珊. 油类捕收剂对煤粒气泡间相互作用行为的影响机理研究[D]. 太原: 太原理工大学, 2021.
WU C S. Study on the effect of oil collector on the interaction behavior between coal particle and bubble and the related mechanism[D]. Taiyuan: Taiyuan University of Technology, 2021.
[43] YOON R-H, YORDAN J L. Induction time measurements for the quartz-amine flotation system[J]. Journal of Colloid and Interface Science, 1991, 141(2): 374−383. doi: 10.1016/0021-9797(91)90333-4
[44] 程雅丽. 煤泥浮选中捕收剂与起泡剂交互作用机理的研究[D]. 北京: 中国矿业大学(北京), 2021.
CHENG Y L. Study on the interaction mechanism of collector and frother in slime flotation[D]. Beijing: China University of Mining and Technology(Beijing), 2021.
[45] 郝晓栋. 复配捕收剂诱导的油泡形成机制及对低阶煤浮选的影响研究[D]. 徐州: 中国矿业大学, 2021.
HAO X D. Formation mechanism of oil bubble induced by compound collector and its effect on flotation of low rank coal[D]. Xuzhou: China University of Mining and Technology, 2021.
[46] RAMIREZ A, GUTIERREZ L, LASKOWSKI J S. Use of “oily bubbles” and dispersants in flotation of molybdenite in fresh and seawater[J]. Minerals Engineering, 2020, 148(C): 1−9.
[47] 胡海山. 低阶煤-气/油泡的矿化过程特征及其活性油泡浮选过程强化研究[D]. 徐州: 中国矿业大学, 2020.
HU H S. Mineralization characteristics of low rank coal−gas/oil bubbles and the flotation process intensification by activated oil bubble[D]. Xuzhou: China University of Mining and Technology, 2020.
[48] 艾光华, 蔡鑫, 毕康颖, 等. 金属离子对矿物浮选行为影响的研究进展[J]. 有色金属科学与工程, 2017, 8(6): 70−74.
AI G H, CAI X, BI K Y, et al. Research progress on the effect of matal ions on mineral flotation behavior[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 70−74.
[49] 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868.
GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868.
[50] FAN C W, HU Y C, MARKUSZEWSKI R, et al. Role of induction time and other properties in the recovery of coal from aqueous suspensions by agglomeration with heptane[J]. Energy Fuels, 1989, 3(3): 376−381. doi: 10.1021/ef00015a021
[51] CAO S M, CAO Y J, MA Z L, et al. Metal ion release in bastnaesite flotation system and implications for flotation[J]. Minerals, 2018, 8(5): 203. doi: 10.3390/min8050203
[52] ZHANG Z J, LIU J T. Effect of calcium ions on induction time between a coal particle and air bubble[J]. International Journal of Coal Preparation and Utilization, 2015, 35(1): 31−38. doi: 10.1080/19392699.2014.934984
[53] 陈亮, 陈松降, 陶秀祥, 等. 电解质对低阶煤油泡浮选矿化过程的影响[J]. 煤炭学报, 2018, 43(5): 1432−1439.
CHEN L, CHEN S J, TAO X X, et al. Effects of electrolytes on the mineralization process in oily−bubble flotation of low rank coal[J]. Journal of China Coal Society, 2018, 43(5): 1432−1439.
-