Theoretical Analysis of Flotation Reagent Performance
-
摘要:
研究了浮选调整剂(石灰、硫化钠、氰化钠、金属离子活化剂)对矿物浮选的选择性以及捕收剂烃基结构与性能的关系。研究结果表明,应用溶度积判据或前线轨道能级参数研究浮选药剂性能或构效关系,应重视矿物表面性质以及矿物—药剂作用机制研究。通过分析矿物表面性质,得出硫化钠、氰化钠、铜铅金属离子对硫化矿的选择性与矿物表面位点的价电子构型存在一定对应关系,与溶度积判据分析结果一致或具有互补性。应用前线轨道能级参数研究黄药结构与活性的关系,结合溶度积判据分析矿物与黄药作用规律,得出了黄药烃基结构影响捕收性能的疏水因素、价键因素以及空间几何效应的主次关系。综上得出,应用单一的理论参数难以全面解释浮选药剂性能,建立相互耦合的药剂性能理论分析体系或是今后研究的重点之一。
Abstract:The influence of flotation regulators (such as lime, sodium sulfide, sodium cyanide and metal ion activator) on mineral flotation and the relationship between collector structure and performance were studied. The results showed that solubility product criterion and frontier orbital energy level parameters could be used to analyze the properties or structure-activity relationship of flotation reagents, but should be paid attention to the study of mineral surface properties, non-valence bond factors of flotation reagent properties and mineral-reagent interaction mechanism. By examining mineral surface features, it has been determined that selective depression or activation of minerals by flotation regulator (such as sodium sulfide, sodium cyanide, copper and lead metal ions) had a certain relationship with the valence electron configuration of mineral lattice metal, which was consistent with or supplementary to the results of solubility product criterion analysis. The interaction mechanism between minerals and reagents was examined using the solubility product criterion and frontier orbital energy level parameters were used to study the relationship between hydrocarbon group structure and xanthate properties. As a result, the primary and secondary relationships of hydrophobic factors, valence bond factors and spatial geometric effects of xanthate’s alkyl group structure on collecting performance were obtained. In conclusion, it is difficult to fully explain the performance of flotation reagents with a single theoretical parameter. The establishment of the coupled theoretical analysis system for reagent performance should be one of the key focuses of future research.
-
-
表 1 硫化矿晶格金属离子周期表分布与氰化钠抑制强弱顺序关系
Table 1. Relationship of the periodic table distribution of metal ions in sulfide crystal lattice and the depressing performance order of sodium cyanide
元素周期 d区元素 ds区元素 p区元素 ⅤB ⅥB ⅦB ⅧB ⅠB ⅡB ⅢA ⅣA ⅤA 第四周期 V [Fe] Co [Ni] (Cu) [Zn] Ga Ge {As} 第五周期 Mo Ru Rh [Pd] (Ag) (Cd) In {Sn} {Sb} 第六周期 W Re Os Ir (Pt) [Au] (Hg) {Tl} {Pb} {Bi} 注:[ ]表示NaCN抑制能力最强;()表示NaCN抑制次之;{}表示NaCN难以抑制。 表 2 乙基黄原酸金属盐以及金属硫化物的溶度积
Table 2. Solubility product of metal-ethylxanthate and metal sulfide
金属离子 Pb2+ Zn2+ Cu2+ Fe2+ Sb3+ 乙基黄原酸金属盐溶度积PLs 16.7 8.2 24.2 7.1 24.0 PLs/m 8.35 4.1 12.1 3.55 8.0 硫化物溶度积pKs 27.5 22.5 36.1 18.1 92.7 注: m为金属阳离子电荷量。 表 3 药剂化学式及非极性基结构
Table 3. Chemical formula and its nonpolar structure
药剂代号 R1C(S)NHC(O)OR2 药剂代号 R1C(S)SC(O)OR2 IBECTC R1 = CH3CH2,R2 = CH2CH(CH3)2 EXF R1 = CH3CH2,R2 = CH2CH3 NBECTC R1 = CH3CH2,R2 =(CH2)3 CH3 PXF R1 = CH3(CH2)2,R2 = CH2CH3 AECTC R1 = CH3CH2,R2 =(CH2)4 CH3 BXF R1 =CH3(CH2)3,R2 = CH2CH3 IPECTC R1 = CH3CH2,R2 = CH(CH3)2 IBXF R1 =(CH3)2CHCH2,R2 = (CH2)3CH3 EECTC R1 = CH3CH2,R2 = CH2CH3 BeXF R1 =C6H5CH2,R2 =CH2CH3 sBSF R1 =CH3CH2CH(CH3),R2 =CH2CH3 XBF R1 =(CH3)2CH,R2 =(CH2)3CH3 IPXF R1 =(CH3)2CH,R2 =CH2CH3 表 4 烷氧羰基硫氨酯(CTC)类药剂的前线轨道能级与选择性指数
Table 4. Frontier orbital energy level and selectivity index of CTC-type reagents
药剂代号 HOMO/eV LUMO/eV 回收率/% R △ε/% 黄铜矿 黄铁矿 EECTC −6.7247 −1.6149 83.2 38.2 2.178 (1) 45 (1) NBECTC −6.7230 −1.6124 88.2 49.6 1.778 (2) 38.6(2) AECTC −6.7217 −1.6121 91.1 58.3 1.563 (3) 32.8 (3) IPECTC −6.6839 −1.5896 90.8 67.3 1.349 (4) 23.5 (4) IBECTC −6.7132 −1.6072 90.6 81.3 1.114 (5) 9.3 (5) 注:黄铜矿和黄铁矿回收率数据引自文献[16]。R为黄铜矿与黄铁矿回收率比值,括号中数据为R和△ε由大到小排序的序号。 表 5 EXF类前线轨道能级及其选择性指数R
Table 5. Frontier orbital energy level and selectivity index of EXF-type reagents
药剂代号 HOMO/eV LUMO/eV 黄铜矿/黄铁矿回收率比值R pH=5 pH=5 pH=8.5 pH=10.5 EXF −6.8846 −1.9872 1.692 (2)* 3.5 (3) 2.9 (4) 10.0 (3) PXF −6.8476 −2.0555 / 2.4 (4) 4.9 (3) 19.9 (1) BXF −6.8427 −2.0607 / 3.7 (2) 5.0 (1) 10.2 (2) IBXF −6.8367 −2.0533 2.224 (1)* / / / BeXF −6.8182 −2.0949 / 8.0 (1) 5.0 (1) 7.3 (4) sBSF −6.8057 −2.0136 / 1.8 (5) 1.5 (7) 2.4 (6) IPXF −6.8030 −2.0248 1.316 (4)* 1.3 (7) 1.9 (5) 2.4 (6) XBF −6.8014 −2.0272 1.373 (3)* 1.5 (6) 1.9 (5) 5.2 (5) 注:括号中数据为R由大到小排序的序号,*数据引自文献[16],其他引自文献[17]。 -
[1] 王淀佐. 浮选剂作用原理与应用[M]. 北京: 冶金工业出版社, 1983.
WANG D Z. Principles and applications of flotation reagents[M]. Beijing: Metallurgical Industry Press, 1983.
[2] 林强, 王淀佐. 浮选药剂的活性—选择性原理[J]. 有色金属, 1990(4): 32−37.
LIN Q, WANG D Z. Principle of reactivity and selectivity of flotation reagent[J]. Nonferrous Metals, 1990(4): 32−37.
[3] PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110.
[4] LIU G, LIU J, HUANG Y, et al. New advances in the understanding and development of flotation collectors: A Chinese experience[J]. Minerals Engineering, 2018, 118: 78−86. doi: 10.1016/j.mineng.2018.01.009
[5] 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106.
CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106.
[6] LIU G Y, YANG X L, ZHONG H. Molecular design of flotation collectors: a recent progress[J]. Adv Colloid Interfac, 2017, 246: 181−195. doi: 10.1016/j.cis.2017.05.008
[7] 孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037
SUN W, HU Y H, QIU G Z, et al. Kinetic simulation of ion adsorption on sphalerite (110) Surface[J]. The Chinese Journal of Nonferrous Metals, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037
[8] 张英, 覃武林, 孙伟, 等. 石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J]. 中国有色金属学报, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028
ZHANG Y, QIN W L, SUN W, et al. Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028
[9] 薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006
XUE C, WEI Z C. Action mechanism and research progress of sphalerite inhibitors[J]. Conservation and Utilization of Mineral Resources, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006
[10] 朱玉霜, 朱建光. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.
ZHU Y S, ZHU J G. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996.
[11] 胡岳华, 冯其明. 矿产资源加工技术与设备[M]. 北京: 科学出版社, 2006.
HU Y H, FENG Q M. Mineral resources processing technology and equipment [M]. Beijing: Science Press, 2006.
[12] 胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014.
HU Y H. Mineral flotation [M]. Changsha: Central South University Press, 2014.
[13] 徐晓军, 胡熙庚, 刘金华. 辉锑矿的活化与浮选特性[J]. 有色金属(选矿部分), 1995(6): 1−4.
XU X J, HU X G, LIU J H. Activation and flotation characteristics of stibnite[J]. Nonferrous Metals (Mineral Processing), 1995(6): 1−4.
[14] 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987.
HU X G. Beneficiation of non-ferrous sulfide ore [M]. Beijing: Metallurgical Industry Press, 1987.
[15] 朱一民, 周菁. 金属阳离子活化雌黄的浮选及机理[J]. 有色矿山, 2001(1): 28−31+36.
ZHU Y M, ZHOU J. Flotation and mechanism of metal cationic activation[J]. Nonferrous Mines, 2001(1): 28−31+36.
[16] FU Y L, WANG. S S. Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors: US4657688[P]. 1987−04−14.
[17] ACKERMAN P K, HARRIS G H, KLIMPEL R R, et al. Use of xanthogen formates as collectors in the flotation of copper sulfides and pyrite[J]. International Journal of Mineral Processing, 2000, 58: 1−13. doi: 10.1016/S0301-7516(99)00068-X
[18] 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594.
CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon group structure on flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1589−1594.
[19] 卢绿荣, 陈建华, 李玉琼. 硫化矿浮选捕收剂分子结构与性能的电子态密度研究[J]. 中国有色金属学报, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22
LU L R, CHEN J H, LI Y Q. Electronic states density study of molecular structures and activity of sulfide flotation collectors[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22
[20] BULATOVIC S M. Handbook of flotation reagents [M]. Amsterdam: Elsevier, 2007: 235−293.
[21] YANG X, BORIS A, LIU G, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032
-