浮选药剂性能理论分析

王纪镇, 荆茂晨, 刘睿华, 韩硕. 浮选药剂性能理论分析[J]. 矿产保护与利用, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002
引用本文: 王纪镇, 荆茂晨, 刘睿华, 韩硕. 浮选药剂性能理论分析[J]. 矿产保护与利用, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002
WANG Jizhen, JING Maochen, LIU Ruihua, HAN Shuo. Theoretical Analysis of Flotation Reagent Performance[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002
Citation: WANG Jizhen, JING Maochen, LIU Ruihua, HAN Shuo. Theoretical Analysis of Flotation Reagent Performance[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002

浮选药剂性能理论分析

  • 基金项目: 陕西省自然科学基础研究计划项目(2021JM394,2017JQ5090)
详细信息
    作者简介: 王纪镇(1985— ),男,山东聊城人,博士,讲师,主要从事矿物浮选理论与工艺研究
  • 中图分类号: TD91;TD923+.1

Theoretical Analysis of Flotation Reagent Performance

  • 研究了浮选调整剂(石灰、硫化钠、氰化钠、金属离子活化剂)对矿物浮选的选择性以及捕收剂烃基结构与性能的关系。研究结果表明,应用溶度积判据或前线轨道能级参数研究浮选药剂性能或构效关系,应重视矿物表面性质以及矿物—药剂作用机制研究。通过分析矿物表面性质,得出硫化钠、氰化钠、铜铅金属离子对硫化矿的选择性与矿物表面位点的价电子构型存在一定对应关系,与溶度积判据分析结果一致或具有互补性。应用前线轨道能级参数研究黄药结构与活性的关系,结合溶度积判据分析矿物与黄药作用规律,得出了黄药烃基结构影响捕收性能的疏水因素、价键因素以及空间几何效应的主次关系。综上得出,应用单一的理论参数难以全面解释浮选药剂性能,建立相互耦合的药剂性能理论分析体系或是今后研究的重点之一。

  • 加载中
  • 图 1  硫化矿表面金属位点与黄药和氢氧根离子作用产物的溶度积

    Figure 1. 

    图 2  黄药的前线分子轨道能级以及金属黄原酸盐的溶度积

    Figure 2. 

    表 1  硫化矿晶格金属离子周期表分布与氰化钠抑制强弱顺序关系

    Table 1.  Relationship of the periodic table distribution of metal ions in sulfide crystal lattice and the depressing performance order of sodium cyanide

    元素周期d区元素ds区元素p区元素
    ⅤBⅥBⅦBⅧBⅠBⅡBⅢAⅣAⅤA
    第四周期V[Fe]Co[Ni](Cu)[Zn]GaGe{As}
    第五周期MoRuRh[Pd](Ag)(Cd)In{Sn}{Sb}
    第六周期WReOsIr(Pt)[Au](Hg){Tl}{Pb}{Bi}
    注:[ ]表示NaCN抑制能力最强;()表示NaCN抑制次之;{}表示NaCN难以抑制。
    下载: 导出CSV

    表 2  乙基黄原酸金属盐以及金属硫化物的溶度积

    Table 2.  Solubility product of metal-ethylxanthate and metal sulfide

    金属离子Pb2+Zn2+Cu2+Fe2+Sb3+
    乙基黄原酸金属盐溶度积PLs16.78.224.27.124.0
    PLs/m8.354.112.13.558.0
    硫化物溶度积pKs27.522.536.118.192.7
    注: m为金属阳离子电荷量。
    下载: 导出CSV

    表 3  药剂化学式及非极性基结构

    Table 3.  Chemical formula and its nonpolar structure

    药剂代号R1C(S)NHC(O)OR2药剂代号R1C(S)SC(O)OR2
    IBECTCR1 = CH3CH2,R2 = CH2CH(CH3)2EXFR1 = CH3CH2,R2 = CH2CH3
    NBECTCR1 = CH3CH2,R2 =(CH2)3 CH3PXFR1 = CH3(CH2)2,R2 = CH2CH3
    AECTCR1 = CH3CH2,R2 =(CH2)4 CH3BXFR1 =CH3(CH2)3,R2 = CH2CH3
    IPECTCR1 = CH3CH2,R2 = CH(CH3)2IBXFR1 =(CH3)2CHCH2,R2 = (CH2)3CH3
    EECTCR1 = CH3CH2,R2 = CH2CH3BeXFR1 =C6H5CH2,R2 =CH2CH3
    sBSFR1 =CH3CH2CH(CH3),R2 =CH2CH3
    XBFR1 =(CH3)2CH,R2 =(CH2)3CH3
    IPXFR1 =(CH3)2CH,R2 =CH2CH3
    下载: 导出CSV

    表 4  烷氧羰基硫氨酯(CTC)类药剂的前线轨道能级与选择性指数

    Table 4.  Frontier orbital energy level and selectivity index of CTC-type reagents

    药剂代号HOMO/eVLUMO/eV回收率/%R△ε/%
    黄铜矿黄铁矿
    EECTC−6.7247−1.614983.238.22.178 (1)45 (1)
    NBECTC−6.7230−1.612488.249.61.778 (2)38.6(2)
    AECTC−6.7217−1.612191.158.31.563 (3)32.8 (3)
    IPECTC−6.6839−1.589690.867.31.349 (4)23.5 (4)
    IBECTC−6.7132−1.607290.681.31.114 (5)9.3 (5)
    注:黄铜矿和黄铁矿回收率数据引自文献[16]。R为黄铜矿与黄铁矿回收率比值,括号中数据为R△ε由大到小排序的序号。
    下载: 导出CSV

    表 5  EXF类前线轨道能级及其选择性指数R

    Table 5.  Frontier orbital energy level and selectivity index of EXF-type reagents

    药剂代号HOMO/eVLUMO/eV黄铜矿/黄铁矿回收率比值R
    pH=5pH=5pH=8.5pH=10.5
    EXF−6.8846−1.98721.692 (2)*3.5 (3)2.9 (4)10.0 (3)
    PXF−6.8476−2.0555/2.4 (4)4.9 (3)19.9 (1)
    BXF−6.8427−2.0607/3.7 (2)5.0 (1)10.2 (2)
    IBXF−6.8367−2.05332.224 (1)*///
    BeXF−6.8182−2.0949/8.0 (1)5.0 (1)7.3 (4)
    sBSF−6.8057−2.0136/1.8 (5)1.5 (7)2.4 (6)
    IPXF−6.8030−2.02481.316 (4)*1.3 (7)1.9 (5)2.4 (6)
    XBF−6.8014−2.02721.373 (3)*1.5 (6)1.9 (5)5.2 (5)
    注:括号中数据为R由大到小排序的序号,*数据引自文献[16],其他引自文献[17]。
    下载: 导出CSV
  • [1]

    王淀佐. 浮选剂作用原理与应用[M]. 北京: 冶金工业出版社, 1983.

    WANG D Z. Principles and applications of flotation reagents[M]. Beijing: Metallurgical Industry Press, 1983.

    [2]

    林强, 王淀佐. 浮选药剂的活性—选择性原理[J]. 有色金属, 1990(4): 32−37.

    LIN Q, WANG D Z. Principle of reactivity and selectivity of flotation reagent[J]. Nonferrous Metals, 1990(4): 32−37.

    [3]

    PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110.

    [4]

    LIU G, LIU J, HUANG Y, et al. New advances in the understanding and development of flotation collectors: A Chinese experience[J]. Minerals Engineering, 2018, 118: 78−86. doi: 10.1016/j.mineng.2018.01.009

    [5]

    陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106.

    CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106.

    [6]

    LIU G Y, YANG X L, ZHONG H. Molecular design of flotation collectors: a recent progress[J]. Adv Colloid Interfac, 2017, 246: 181−195. doi: 10.1016/j.cis.2017.05.008

    [7]

    孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    SUN W, HU Y H, QIU G Z, et al. Kinetic simulation of ion adsorption on sphalerite (110) Surface[J]. The Chinese Journal of Nonferrous Metals, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    [8]

    张英, 覃武林, 孙伟, 等. 石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J]. 中国有色金属学报, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028

    ZHANG Y, QIN W L, SUN W, et al. Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028

    [9]

    薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006

    XUE C, WEI Z C. Action mechanism and research progress of sphalerite inhibitors[J]. Conservation and Utilization of Mineral Resources, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006

    [10]

    朱玉霜, 朱建光. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.

    ZHU Y S, ZHU J G. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996.

    [11]

    胡岳华, 冯其明. 矿产资源加工技术与设备[M]. 北京: 科学出版社, 2006.

    HU Y H, FENG Q M. Mineral resources processing technology and equipment [M]. Beijing: Science Press, 2006.

    [12]

    胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014.

    HU Y H. Mineral flotation [M]. Changsha: Central South University Press, 2014.

    [13]

    徐晓军, 胡熙庚, 刘金华. 辉锑矿的活化与浮选特性[J]. 有色金属(选矿部分), 1995(6): 1−4.

    XU X J, HU X G, LIU J H. Activation and flotation characteristics of stibnite[J]. Nonferrous Metals (Mineral Processing), 1995(6): 1−4.

    [14]

    胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987.

    HU X G. Beneficiation of non-ferrous sulfide ore [M]. Beijing: Metallurgical Industry Press, 1987.

    [15]

    朱一民, 周菁. 金属阳离子活化雌黄的浮选及机理[J]. 有色矿山, 2001(1): 28−31+36.

    ZHU Y M, ZHOU J. Flotation and mechanism of metal cationic activation[J]. Nonferrous Mines, 2001(1): 28−31+36.

    [16]

    FU Y L, WANG. S S. Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors: US4657688[P]. 1987−04−14.

    [17]

    ACKERMAN P K, HARRIS G H, KLIMPEL R R, et al. Use of xanthogen formates as collectors in the flotation of copper sulfides and pyrite[J]. International Journal of Mineral Processing, 2000, 58: 1−13. doi: 10.1016/S0301-7516(99)00068-X

    [18]

    曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594.

    CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon group structure on flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1589−1594.

    [19]

    卢绿荣, 陈建华, 李玉琼. 硫化矿浮选捕收剂分子结构与性能的电子态密度研究[J]. 中国有色金属学报, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22

    LU L R, CHEN J H, LI Y Q. Electronic states density study of molecular structures and activity of sulfide flotation collectors[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22

    [20]

    BULATOVIC S M. Handbook of flotation reagents [M]. Amsterdam: Elsevier, 2007: 235−293.

    [21]

    YANG X, BORIS A, LIU G, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032

  • 加载中

(2)

(5)

计量
  • 文章访问数:  776
  • PDF下载数:  284
  • 施引文献:  0
出版历程
收稿日期:  2023-01-02
刊出日期:  2023-06-15

目录