高硅型含铁锰矿石氢基矿相转化分选试验

张淑敏, 董再蒸, 温国栋, 袁帅, 李艳军. 高硅型含铁锰矿石氢基矿相转化分选试验[J]. 矿产保护与利用, 2023, 43(3): 60-66. doi: 10.13779/j.cnki.issn1001-0076.2023.03.006
引用本文: 张淑敏, 董再蒸, 温国栋, 袁帅, 李艳军. 高硅型含铁锰矿石氢基矿相转化分选试验[J]. 矿产保护与利用, 2023, 43(3): 60-66. doi: 10.13779/j.cnki.issn1001-0076.2023.03.006
ZHANG Shumin, DONG Zaizheng, WEN Guodong, YUAN Shuai, LI Yanjun. Hydrogen Based Phase Transformation Separation of High Silicon Ferromanganese Ores[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 60-66. doi: 10.13779/j.cnki.issn1001-0076.2023.03.006
Citation: ZHANG Shumin, DONG Zaizheng, WEN Guodong, YUAN Shuai, LI Yanjun. Hydrogen Based Phase Transformation Separation of High Silicon Ferromanganese Ores[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 60-66. doi: 10.13779/j.cnki.issn1001-0076.2023.03.006

高硅型含铁锰矿石氢基矿相转化分选试验

  • 基金项目: 国家自然科学基金资助项目(52174240) ;矿物加工科学与技术国家重点实验室开放基金项目(BGRIMM−KJSKL−2023−15)
详细信息
    作者简介: 张淑敏(1965—),女,高级实验师,主要从事复杂矿产资源高效利用技术研究; 董再蒸(1984—),男,辽宁铁岭人,博士,高级实验师。从事矿物加工专业实验教学和矿物分析检测工作,承担复杂难选矿物资源高效综合利用前期研发试验项目。主要研究方向为金属矿物化学氧化预处理、难选金矿石非氰浸出及高效浮选药剂研制与应用。作为主要成员参与了多项国家自然科学基金项目,获授权发明专利1项,获省学术成果奖2项,参编学术专著2部,在Journal of Luminescence,Minerals Engineering、分析化学、光谱学与光谱分析、东北大学学报等知名期刊发表学术论文近20篇
    通讯作者: 董再蒸(1984—),男,高级实验师,主要从事复杂矿产资源高效利用技术研究
  • 中图分类号: TD951.1;TD951.2

Hydrogen Based Phase Transformation Separation of High Silicon Ferromanganese Ores

More Information
    Corresponding author: DONG Zaizheng
  • 锰铁矿石是锰、铁选冶的重要原料,由于类质同象及微细粒嵌布等因素影响,锰与铁难以实现高效分离并综合利用。针对高硅型含铁锰矿石,制定了氢基矿相转化−磁选工艺流程,并考察了焙烧温度、焙烧时间、还原气体浓度及总气量对锰铁分离及二价锰转化率效果的影响。试验结果表明,在磨矿细度为−0.074 mm占比72%、焙烧温度660 ℃、气体体积比v(CO)∶v(H2)=1∶3、还原气体积浓度50%、总气量600 mL/min、焙烧时间40 min、磁选磁场强度1070 Oe的条件下,可获得全锰品位31.00%、回收率91.01%、二价锰转化率91.29%的锰精矿及铁品位28.50%、回收率50.63%的铁精矿。化学成分分析、XRD分析、SEM−EDS分析结果均表明锰矿物与铁矿物实现了有效的分离。

  • 加载中
  • 图 1  硬锰矿(Ps)、软锰矿(Pu)、褐铁矿(Lim)与脉石(G)间复杂共生关系照片

    Figure 1. 

    图 2  氢基矿相转化装置示意图

    Figure 2. 

    图 3  焙烧温度对氢基矿相转化的影响

    Figure 3. 

    图 4  焙烧时间对氢基矿相转化的影响

    Figure 4. 

    图 5  还原气体浓度对氢基矿相转化的影响

    Figure 5. 

    图 6  总气量对氢基矿相转化的影响

    Figure 6. 

    图 7  不同选别阶段产品的XRD分析谱图(a:原矿;b:矿相转化产品;c:磁选精矿;d:磁选尾矿)

    Figure 7. 

    图 8  磁选精矿(a)和磁选尾矿(b)的扫描电镜点扫描和线扫描分析结果

    Figure 8. 

    表 1  锰铁矿石化学成分分析(质量分数)

    Table 1.  Chemical compositions of the ferromanganese ores (mass fraction) /%

    成分TMnMn2+TFeFeOSiO2Al2O3CaOMgOPS烧失
    含量24.500.629.27<0.1034.356.170.140.400.260.00710.04
    下载: 导出CSV

    表 2  氢基矿相转化与磁选试验产品的化学成分分析(质量分数)

    Table 2.  Chemical compositions of the roasted and magnetic separation products (mass fraction) /%

    产品名称TMnMn2+TFeFeOSiO2Al2O3CaOMgOPS
    矿相转化产品27.0025.710.3211.0637.957.770.200.350.310.008
    磁选精矿16.2015.628.5032.8232.588.890.240.430.690.016
    磁选尾矿31.0028.35.500.9340.556.580.250.300.190.009
    下载: 导出CSV
  • [1]

    刘陟娜, 许虹, 王秋舒, 等. 中国锰矿供需现状及可持续发展建议[J]. 资源与产业, 2015, 17(6): 38−43. doi: 10.13776/j.cnki.resourcesindustries.20151126.006

    LIU Z N, XU H, WANG Q S, et al. China's manganese supply−demand actuality and its sustainable development[J]. Resources & Industries, 2015, 17(6): 38−43. doi: 10.13776/j.cnki.resourcesindustries.20151126.006

    [2]

    刘鹏飞, 袁帅, 李艳军, 等. 含铁锰矿石资源概述及开发利用研究现状[J]. 中国锰业, 2021, 39(1): 5−12.

    LIU P F, YUAN S, LI Y J, et al. A research status of development and utilization of iron−bearing manganese ore resources[J]. Chinese manganese industry, 2021, 39(1): 5−12.

    [3]

    谢丹丹, 童雄, 张洪花, 等. 铁锰矿的选矿工艺及其研究进展[J]. 中国锰业, 2016, 34(2): 4−7.

    XIE D D, TONG X, ZHANG H H, et al. Research development and beneficiation technology of Ferro−Mn ore[J]. Chinese manganese industry, 2016, 34(2): 4−7.

    [4]

    韩跃新, 张琦, 李艳军, 等. 海南石碌铁矿石氢基矿相转化新技术研究及应用[J]. 中国矿业大学学报, 2022, 51(3): 537−543. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015

    HAN Y X, ZHANG Q, LI Y J, et al. Research and application of a new hydrogen−based phase transformation technology for Hainan−Shilv iron ore[J]. Journal of China University of Mining & Technology, 2022, 51(3): 537−543. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015

    [5]

    TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J], Resources, Conservation and Recycling, 2021, 172: 105680.

    [6]

    TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resources, Conservation and Recycling, 2021, 172: 105680

    [7]

    CAO Y, SUN Y S, GAO P, et al. Mechanism for suspension magnetization roasting of iron ore using straw−type biomass reductant[J], International Journal of Mining Science and Technology, 2021, 31(6): 1075−1083.

    [8]

    LIU B B, ZHANG Y B, SU Z J, et al. A study on the carbonization and alloying process of MnO2 by methane−hydrogen gas mixture in the presence of Fe2O3, Powder Technology, 2018, 325, 271−279.

    [9]

    YUAN S, ZHOU W T, HAN Y X, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J], Powder Technology, 2020, 373, 689−701.

    [10]

    YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low−grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J], Minerals Engineering, 2020, 152, 106359.

    [11]

    YUAN S, ZHOU W T, HAN Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron−bearing manganese ore[J], Powder Technology, 2020, 373, 73−81.

    [12]

    CAO Y, SUN Y S, GAO P, et al. Mechanism for suspension magnetization roasting of iron ore using straw−type biomass reductant, International Journal of Mining Science and Technology, 2021, 31(6): 1075−1083.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  433
  • PDF下载数:  196
  • 施引文献:  0
出版历程
收稿日期:  2023-06-05
刊出日期:  2023-06-15

目录