-
摘要:
锰铁矿石是锰、铁选冶的重要原料,由于类质同象及微细粒嵌布等因素影响,锰与铁难以实现高效分离并综合利用。针对高硅型含铁锰矿石,制定了氢基矿相转化−磁选工艺流程,并考察了焙烧温度、焙烧时间、还原气体浓度及总气量对锰铁分离及二价锰转化率效果的影响。试验结果表明,在磨矿细度为−0.074 mm占比72%、焙烧温度660 ℃、气体体积比v(CO)∶v(H2)=1∶3、还原气体积浓度50%、总气量600 mL/min、焙烧时间40 min、磁选磁场强度1070 Oe的条件下,可获得全锰品位31.00%、回收率91.01%、二价锰转化率91.29%的锰精矿及铁品位28.50%、回收率50.63%的铁精矿。化学成分分析、XRD分析、SEM−EDS分析结果均表明锰矿物与铁矿物实现了有效的分离。
Abstract:Ferromanganese ore is an important raw material for manganese and iron beneficiation and smelting. It is difficult to separate manganese and iron efficiently due to factors such as isomorphism and fine particle embedding. Thetechnological process of hydrogen based mineral phase transformation magnetic separation was established for high silicon ferromanganese ores, and the effects of roasting temperature, roasting time, reduction gas concentration and total gas volume on the separation of ferromanganese and the conversion rate of manganese divalent were investigated. The experimental results show that under the conditions of grinding fineness of −0.074 mm accounting for 72%, roasting temperature of 660 ℃, gas volume ratio CO: H2=1:3, reducing gas volume concentration of 50%, total gas volume of 600 mL/min, roasting time of 40 minutes, magnetic separation magnetic field strength of 1070 Oe, a manganese concentrate with a total manganese grade of 31.00%, a recovery rate of 91.01%, a divalent manganese conversion rate of 91.29%, and an iron concentrate with an iron grade of 28.50% and a recovery rate of 50.63% can be obtained. The results of chemical composition analysis, XRD analysis and SEM−EDS analysis show that manganese minerals and iron minerals have been effectively separated.
-
-
表 1 锰铁矿石化学成分分析(质量分数)
Table 1. Chemical compositions of the ferromanganese ores (mass fraction)
/% 成分 TMn Mn2+ TFe FeO SiO2 Al2O3 CaO MgO P S 烧失 含量 24.50 0.62 9.27 <0.10 34.35 6.17 0.14 0.40 0.26 0.007 10.04 表 2 氢基矿相转化与磁选试验产品的化学成分分析(质量分数)
Table 2. Chemical compositions of the roasted and magnetic separation products (mass fraction)
/% 产品名称 TMn Mn2+ TFe FeO SiO2 Al2O3 CaO MgO P S 矿相转化产品 27.00 25.7 10.32 11.06 37.95 7.77 0.20 0.35 0.31 0.008 磁选精矿 16.20 15.6 28.50 32.82 32.58 8.89 0.24 0.43 0.69 0.016 磁选尾矿 31.00 28.3 5.50 0.93 40.55 6.58 0.25 0.30 0.19 0.009 -
[1] 刘陟娜, 许虹, 王秋舒, 等. 中国锰矿供需现状及可持续发展建议[J]. 资源与产业, 2015, 17(6): 38−43. doi: 10.13776/j.cnki.resourcesindustries.20151126.006
LIU Z N, XU H, WANG Q S, et al. China's manganese supply−demand actuality and its sustainable development[J]. Resources & Industries, 2015, 17(6): 38−43. doi: 10.13776/j.cnki.resourcesindustries.20151126.006
[2] 刘鹏飞, 袁帅, 李艳军, 等. 含铁锰矿石资源概述及开发利用研究现状[J]. 中国锰业, 2021, 39(1): 5−12.
LIU P F, YUAN S, LI Y J, et al. A research status of development and utilization of iron−bearing manganese ore resources[J]. Chinese manganese industry, 2021, 39(1): 5−12.
[3] 谢丹丹, 童雄, 张洪花, 等. 铁锰矿的选矿工艺及其研究进展[J]. 中国锰业, 2016, 34(2): 4−7.
XIE D D, TONG X, ZHANG H H, et al. Research development and beneficiation technology of Ferro−Mn ore[J]. Chinese manganese industry, 2016, 34(2): 4−7.
[4] 韩跃新, 张琦, 李艳军, 等. 海南石碌铁矿石氢基矿相转化新技术研究及应用[J]. 中国矿业大学学报, 2022, 51(3): 537−543. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015
HAN Y X, ZHANG Q, LI Y J, et al. Research and application of a new hydrogen−based phase transformation technology for Hainan−Shilv iron ore[J]. Journal of China University of Mining & Technology, 2022, 51(3): 537−543. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015
[5] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J], Resources, Conservation and Recycling, 2021, 172: 105680.
[6] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resources, Conservation and Recycling, 2021, 172: 105680
[7] CAO Y, SUN Y S, GAO P, et al. Mechanism for suspension magnetization roasting of iron ore using straw−type biomass reductant[J], International Journal of Mining Science and Technology, 2021, 31(6): 1075−1083.
[8] LIU B B, ZHANG Y B, SU Z J, et al. A study on the carbonization and alloying process of MnO2 by methane−hydrogen gas mixture in the presence of Fe2O3, Powder Technology, 2018, 325, 271−279.
[9] YUAN S, ZHOU W T, HAN Y X, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J], Powder Technology, 2020, 373, 689−701.
[10] YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low−grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J], Minerals Engineering, 2020, 152, 106359.
[11] YUAN S, ZHOU W T, HAN Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron−bearing manganese ore[J], Powder Technology, 2020, 373, 73−81.
[12] CAO Y, SUN Y S, GAO P, et al. Mechanism for suspension magnetization roasting of iron ore using straw−type biomass reductant, International Journal of Mining Science and Technology, 2021, 31(6): 1075−1083.
-