Optimization Study of Magnetic Separation − Reverse Flotation Process for Magnetic Hematite Ore in Anqian
-
摘要:
随着鞍千矿山入选矿石中磁性矿含量增加,为解决当前鞍千矿石联合分选工艺流程中重选精矿品位低、浮选提质困难、浮选尾矿铁损失严重等问题,以鞍千原矿为研究对象,开展原矿磨矿—两段弱磁选—强磁选—反浮选工艺优化实验研究。结果表明:原矿在最佳磨矿细度为−0.043 mm含量80%、两段弱磁选磁场磁感应强度均为0.1 T、强磁选磁场磁感应强度为0.7 T的条件下,得到高品位的弱磁选精矿,由弱磁选精选尾矿与强磁选精矿混合制备的混磁精矿,作为反浮选给矿;在反浮选最佳药剂制度为矿浆温度35±1℃、pH为11.5、淀粉用量800 g/t、CaO用量1000 g/t、粗选和精选捕收剂(TD−Ⅱ)用量分别为1000 g/t和450 g/t的条件下,经一次粗选一次精选三次扫选反浮选闭路实验,获得了浮选精矿TFe品位为67.16%、对浮选给矿回收率为93.99%的技术指标。最终采用二段弱磁选—强磁选—反浮选工艺获得了产率为36.94%、铁品位为68.80%、铁回收率为88.19%的铁精矿。通过FTIR分析表明,淀粉可以通过物理吸附的方式选择性吸附在赤铁矿表面,抑制了捕收剂在赤铁矿表面的吸附。
Abstract:With the increase of magnetic mineral content in the raw ore of Anqian mine, there are many problems such as low grade of gravity separation concentrate, difficulty in improving flotation concentrates quality, and serious iron loss of flotation tailings in the current joint beneficiation process. In order to solve these problems, an experimental research of process optimization was carried out based on the Anqian iron ore, including grinding, two stages of low intensity magnetic separation, high intensity magnetic separation, and reverse flotation. The results showed that under the condition of the optimal grinding fineness of −0.043 mm with a content of 80%, the magnetic induction intensity of both two stages low intensity magnetic separation of 0.1 T, and the magnetic induction intensity of high intensity magnetic separation of 0.7 T, the mixed magnetic concentrates consisted of the second stage low intensity magnetic separation tailings and high intensity magnetic separation concentrates was obtained, which was used as the feed of reverse flotation. Furthermore, the optimal reagent regime for reverse flotation was determined as slurry temperature of 35±1 ℃, pH of 11.5, starch dosage of 800 g/t, CaO dosage of 1000 g/t, and collector (TD−Ⅱ) dosages of 1000 g/t and 450 g/t for rough and cleaning, respectively. Under the condition of the above optimal reagent regime, the technical indicators for flotation concentrate of a TFe grade of 67.16% and a recovery of 93.99% calculated by flotation feed were obtained through one rough, one cleaning, and three scavenging in reverse flotation closed circuit experiments. Two stages low intensity magnetic separation—high intensity magnetic separation—reverse flotation can obtain the final iron concentrate with yield of 36.94%, iron grade of 68.80% and iron recovery of 88.19%. FTIR analysis showed that starch can selectively adsorbed on the surface of hematite through physical adsorption, which inhibited the adsorption of collectors on the surface of hematite.
-
Key words:
- magnetic separation /
- reverse flotation /
- hematite /
- magnetite
-
-
表 1 原矿化学组成分析结果
Table 1. Analysis results of chemical composition of raw ore
/% 成分 TFe FeO SiO2 Al2O3 CaO MgO S P 烧失 含量 28.99 8.10 48.27 0.20 1.80 2.57 0.015 0.066 1.51 表 2 原矿铁化学物相分析结果
Table 2. Analysis results of iron chemical phase of raw ore
/% 物相 磁性铁
中的铁碳酸铁
中的铁赤褐铁
中的铁硫化铁
中的铁硅酸铁
中的铁总铁 含量 17.62 0.48 9.16 0.49 1.24 28.99 分布率 60.80 1.61 31.61 1.68 4.30 100.00 表 3 磁选回路选矿指标
Table 3. Beneficiation index of magnetic separation circuit
/% 产品名称 产率 Fe品位 回收率 弱磁精矿 23.50 69.74 57.28 弱磁精选尾矿 3.05 32.82 3.50 强磁精矿 19.81 42.88 29.70 浮选给矿 22.86 41.54 33.20 强磁尾矿 53.64 5.08 9.52 原矿 100.00 28.60 100.00 表 4 混磁精矿反浮选闭路实验结果
Table 4. Results of reverse flotation closed circuit test of mixed magnetic concentrate
/% 产品名称 作业产率 铁品位 铁回收率 浮选精矿 58.78 67.16 93.09 浮选尾矿 41.22 6.12 6.91 合计 100 42.00 100.00 表 5 全流程试验结果
Table 5. The whole process test results
/% 产品名称 产率 Fe品位 Fe回收率 对浮选给矿 对原矿 对浮选给矿 对原矿 弱磁精矿 − 23.50 69.74 − 57.28 浮选精矿 58.78 13.44 67.16 93.09 30.91 浮选尾矿 41.22 9.42 6.12 6.91 2.30 浮选给矿 100.00 22.86 42.00 100.00 33.20 强磁尾矿 − 53.64 5.08 − 9.53 原矿 − 100.0 28.71 − 100.00 最终铁精矿 − 36.94 68.80 − 88.19 表 6 浮选精矿和浮选尾矿化学成分分析结果
Table 6. Analysis results of chemical composition of flotation concentrate and talings
/% 产品 TFe FeO SiO2 Al2O3 CaO MgO S P 烧失 浮选精矿 67.16 18.06 4.18 0.12 0.55 0.63 0.02 0.01 0.54 浮选尾矿 6.12 2.49 83.83 0.41 1.35 3.22 0.01 0.04 2.12 -
[1] 韩跃新, 孙永升, 李艳军, 等. 我国铁矿选矿技术最新进展[J]. 金属矿山, 2015(2): 1−11.
HAN Y X, SUN Y S, LI Y J, et al. New development on mineral processing[J]. mental mine, 2015(2): 1−11.
[2] 张亚明, 王雪峰, 李文超. 铁矿资源综合利用效益评价体系研究[J]. 中国国土资源经济, 2019, 32(4): 43−48.
ZHANG Y M, WANG X F, LI W C. Research on benefit evaluation system of comprehensive utilization of iron ore resources[J]. Chinese Academy of Natural Resources Economics, 2019, 32(4): 43−48.
[3] 王长艳, 徐冬林, 史达, 等. 鞍千磁铁矿工艺矿物学研究[J]. 矿产综合利用, 2022(4): 193−199.
WANG C Y, XU D L, S D, et al. Study on process mineralogy of Anqian magnetite[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 193−199.
[4] 刘双安. 鞍千矿业贫赤铁矿石选矿试验研究[J]. 矿业工程, 2006(4): 34−36.
LIU S A. Experimental study on beneficiation of poor hematite ore in Anqian Mining[J]. Mining Engineering, 2006(4): 34−36.
[5] 徐冬林, 李佩昱, 李艳军, 等. 鞍千贫赤铁矿磁选精矿反浮选提纯试验[J]. 矿产保护与利用, 2020, 40(2): 70−73.
XU D L, LI P Y, LI Y J, et al. Anti−flotation purification test of magnetic beneflotation concentrate of Anqian poor hematite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 70−73.
[6] 徐冬林, 刘双安, 李万兴, 等. 鞍千磁铁矿石全磁选别工艺研究[J]. 现代矿业, 2022, 38(12): 163−165.
XU D L, LIU S A, LI W X, et al. Study on all−magnetic beneficiation process for magnetite ores in Anqian[J]. Modern Mining, 2022, 38(12): 163−165.
[7] 杨光, 任慧, 杨春, 刘杰, 等. 磁选—浮选联合工艺从东鞍山铁矿浮选尾矿中回收铁的试验研究[J]. 矿产保护与利用, 2022, 42(6): 66−72.
YANG G, REN H, YANG C, LIU J, et al. Experimental study on iron recovery from flotation tailings of Donganshan iron ore by combined magnetic separation−flotation process[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 66−72.
[8] 袁晨光, 黄自力, 肖硕, 等. 某铁矿强磁尾矿反浮选回收试验研究[J]. 矿冶工程, 2022, 42(6): 71−73.
YUAN C G, HUANG Z L, XIAO S, et al. Experimental study on reverse flotation recovery of high−intensity magnetic tailings of an iron ore[J]. Mining and Metallurgical Engineering, 2022, 42(6): 71−73.
[9] 刘文胜, 韩跃新, 姚强, 等. 鞍千半自磨−强磁预选精矿短流程工艺试验研究[J]. 金属矿山, 2022(2): 139−145.
LIU W S, HAN Y X, YAO Q, et al. Experimental study on short process of Anqian coarse concentrate by SAG−high−intensity magnetic preconcentration[J]. Mental Mine, 2022(2): 139−145.
[10] 范喜杰, 韦文杰, 徐冬林, 等. 鞍千预选混磁精矿搅拌磨细磨—磁选—反浮选工艺研究[J]. 矿产保护与利用, 2022, 42(2): 144−151.
FAN X J, WEI W J, XU D L, et al. Study on stirring milling−magnetic separation−reverse flotation process of mixed magnetic concentrate in Anqian[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 144−151.
[11] ZHANG H, WANG J, LIU W, LI F. Microwave−assisted synthesis, characterization, and textile sizing property of carboxymethyl corn starch[J]. Fibers and Polymers, 2015, 16(11): 2308−2317. doi: 10.1007/s12221-015-5321-y
[12] KAR B, SAHOO H, RATH S S, et al. Investigations on different starches as depressants for iron ore flotation[J]. Minerals Engineering, 2013, 49: 1−6. doi: 10.1016/j.mineng.2013.05.004
[13] MENG Q, YUAN Z, YU L, et al. Selective depression of titanaugite in the ilmenite flotation with carboxymethyl starch[J]. Applied Surface Science, 2018, 440: 955−962. doi: 10.1016/j.apsusc.2018.01.234
[14] HAO H Q, LI L X, YUAN Z T, et al. Adsorption differences of sodium oleate on siderite and hematite[J]. Minerals Engineering, 2019, 137: 10−18. doi: 10.1016/j.mineng.2019.03.023
[15] 杨斌. 微细粒硅酸盐矿物选择性聚团强化赤铁矿反浮选脱硅研究[D]. 沈阳: 东北大学, 2022.
YANG B. Study on selective agglomeration of fine−grained silicate minerals to enhance anti−flotation desiliconization of hematite[D]. Shenyang: Northeastern University, 2022.
-