Influence of Different Modification Method on the Composition, Structure and Gas Adsorption Property of Natural Clinoptilolite
-
摘要:
天然斜发沸石是储量最大且最具工业利用价值的天然沸石之一,然而受自身组成结构的限制,其吸附性能和环境应用效果欠佳,大规模应用进程迟缓。尽管通过对天然斜发沸石进行改性处理可在一定程度上解决上述问题,但目前关于不同改性方法对其组成结构及吸附性能的影响差异尚不完全明确,缺乏系统的对比研究。以河北承德围场地区天然斜发沸石为研究对象,考察并对比酸、碱、水热和热处理对其组成结构以及水蒸气、甲醛和甲苯气体吸附性的影响。结果表明:几种改性方法对天然斜发沸石的组成结构和气体吸附性的影响程度存在较大差异。酸、碱处理使得斜发沸石的结晶度有所降低,400 ℃热处理可破坏斜发沸石的晶体结构,水热处理使得天然斜发沸石转变为方沸石和P型沸石。天然沸石样品的比表面积和硅铝比分别为13 m2/g和5.2,对水蒸气、甲醛和甲苯气体的吸附量分别为7.5 mg/g、8.5 mg/g和7.5 mg/g;而酸、碱、水热和热处理后沸石样品的比表面积分别为147 m2/g、30 m2/g、27 m2/g和11 m2/g,硅铝比分别为14.9、4.8、3.2和5.2,对水蒸气的吸附量分别为16.5 mg/g、8.0 mg/g、15.0 mg/g和8.5 mg/g,对甲醛的吸附量分别为27.0 mg/g、14.5 mg/g、9.0 mg/g和7.5 mg/g,对甲苯的吸附量分别为26.0 mg/g、8.5 mg/g、6.5 mg/g和5.0 mg/g。不同改性沸石气体吸附性能的差异与其比表面积和孔体积、硅铝比等特征密切相关。酸处理沸石具有相对更高的比表面积和孔体积,表现出优异的气体吸附性能。该研究对于天然斜发沸石的高效利用具有一定促进作用。
Abstract:Natural clinoptilolite is one of the natural zeolites with the largest reserves and the most valuable industrial use. However, due to the limitation of its composition and structure, its adsorption property and environmental application effect are not good enough, which limits its large−scale application. Although the above problems can be somehow solved by modifying natural clinoptilolite, the differences in the effects of different modification methods on its composition and adsorption properties are not completely clear at present, and systematic comparative studies are lacking. In this paper, the natural clinoptilolite in Weichang area of Chengde, Hebei Province was studied, and the effects of acid, alkali, hydrothermal and heat treatment on its composition, water vapor, formaldehyde and toluene gas adsorbability were investigated and compared. The results showed that the effects of different modification methods on the composition and gas adsorbability of natural clinoptilolite were quite different. Acid and alkali treatment reduced the crystallinity of clinoptilolite. 400 ℃ heat treatment destroyed the crystal structure of clinoptilolite. Hydrothermal treatment could transform the natural clinoptilolite to analcime and Na−P zeolite. The specific surface area and Si/Al ratio of natural zeolite samples were 13 m2/g and 4.20, respectively, and the adsorption capacities of water vapor, formaldehyde and toluene were 7.5 mg/g, 8.5 mg/g and 7.5 mg/g, respectively. The specific surface areas of acid, alkali, hydrothermal and heat−treated zeolite samples were 147 m2/g, 30 m2/g, 27 m2/g and 11 m2/g, respectively, and the Si/Al ratios were 24.73, 3.85, 2.39 and 4.20, respectively. The adsorption capacities of water vapor were 16.5 mg/g, 8.0 mg/g, 15.0 mg/g and 8.5 mg/g, respectively, and the adsorption capacities of formaldehyde were 27.0 mg/g, 14.5 mg/g, 9.0 mg/g and 7.5 mg/g, respectively. The adsorption capacities of toluene were 26.0 mg/g, 8.5 mg/g, 6.5 mg/g and 5.0 mg/g, respectively. The difference of gas adsorption properties of different modified zeolites was closely related to their specific surface area, pore volume and Si/Al ratio. Acid treated zeolite had relatively higher specific surface area and pore volume, showing excellent gas adsorption performance. This study had a certain promotion effect on the efficient utilization of natural clinoptilolite.
-
-
表 1 天然沸石和不同改性处理下沸石的化学成分
Table 1. Chemical compositions of natural zeolite and modified zeolites
/% 样品 SiO2 Al2O3 K2O CaO Fe2O3 MgO Na2O TiO2 其他 SiO2 /Al2O3 原沸石 69.23 13.25 5.43 4.98 3.58 1.68 0.65 0.47 0.73 5.2 酸处理沸石 84.45 5.66 5.10 0.41 2.72 0.55 0.32 0.46 0.33 14.9 碱处理沸石 63.47 13.18 5.69 5.43 3.82 1.83 4.84 0.51 1.23 4.8 水热处理沸石 55.61 17.40 3.57 5.86 4.17 1.79 10.27 0.55 0.78 3.2 热处理沸石 69.27 13.34 5.37 4.94 3.55 1.70 0.67 0.47 0.69 5.2 表 2 天然沸石和不同改性沸石的比表面积和孔体积分析结果
Table 2. Specific surface areas and pore volumes of natural zeolite and modified zeolites
样品 Smicro /(m2·g−1) Sexter /(m2·g−1) SBET /(m2·g−1) Vmicro /(m3·g−1) Vmeso /(m3·g−1) 原沸石 0.64 11.97 13 0.000248 0.044079 酸处理沸石 98.16 49.27 147 0.052164 0.128631 碱处理沸石 2.87 27.02 30 0.001353 0.127334 水热沸石 2.39 24.74 27 0.001102 0.085546 热处理沸石 1.01 9.82 11 0.000467 0.041141 -
[1] MISAELIDES P. Application of natural zeolites in environmental remediation: A short review[J]. Microporous and Mesoporous Materials, 2011, 144(1−3): 15−18. doi: 10.1016/j.micromeso.2011.03.024
[2] 邓世茂, 楚哲婷, 梁佳欣, 等. 沸石材料在土壤修复工程中的应用研究进展[J]. 科学通报, 2021, 66(9): 1002−1013.
DENG SM, CHU ZT, LIANG JX, et al. Progress of using zeolite materials in soil remediation engineering (in Chinese). Chinese Science Bulletin, 2021, 66(9): 1002−1013.
[3] 佘振宝. 沸石加工与应用(第2版)[M]. 北京: 化学工业出版社, 2013.
YU ZB. Zeolite processing and applications (2nd edition) [M]. Beijing: Chemical Industry Press, 2013.
[4] 王程, 李文杰, 冷少争, 等. 河北围场天然沸石的矿物学特征及吸附性研究[J]. 岩石矿物学杂志, 2019, 38(6): 753−760.
WANG C, LI W J, LENG S Z, et al. Mineralogical characteristics and adsorption property of natural zeolite from Weichang area, Hebei Provence[J]. Acta Petrologica Et Mineralogica, 2019, 38(6): 753−760.
[5] 王程, 于佳乐, 冯锴, 等. 天然斜发沸石水热转化Na−P沸石及其吸附镉的性能研究[J]. 矿产保护与利用, 2021, 41(6): 96−102.
WANG C, YU J L, FENG K, et al. Hydrothermal conversion of natural plagioclase zeolite to Na−P zeolite and its performance in adsorption of Cd2+[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 96−102.
[6] 王程, 冯锴, 王李鹏, 等. 几种天然斜发沸石矿的组成结构及性质对比研究[J]. 矿产保护与利用, 2023, 43(2): 148−153.
WANG C, FENG K, WANG L P, et al. Comparison of compositions, structures and properties of several natural clinoptilolite zeolites[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 148−153.
[7] WANG C, LENG S Z, GUO H D, et al. Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite[J]. Applied Surface Science, 2019, 478: 319−326. doi: 10.1016/j.apsusc.2019.01.263
[8] CAKICIOGLU−OZKAN F, SEMRA U. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite[J]. Microporous and Mesoporous Materials, 2005, 77(1): 47−53. doi: 10.1016/j.micromeso.2004.08.013
[9] WANG C, CAO L Y, HUANG J F. Influences of acid and heat treatments on the structure and water vapor adsorption property of natural zeolite[J]. Surface and Interface Analysis, 2017, 49: 1249−1255. doi: 10.1002/sia.6321
[10] WANG C, LENG S Z, GUO H D, et al. Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment[J]. Applied Surface Science, 2019, 498: 143874. doi: 10.1016/j.apsusc.2019.143874
[11] ATES A. Effect of alkali−treatment on the characteristics of natural zeolites with different compositions[J]. Journal of Colloid and Interface Science, 2018, 523: 266−281. doi: 10.1016/j.jcis.2018.03.115
[12] EL−ARISH NAS, MOHD ZAKI RSR, MISKAN S N, et al. Adsorption of Pb (II) from aqueous solution using alkaline−treated natural zeolite: Process optimization analysis[J]. Total Environment Research Themes, 2022, 3: 100015.
[13] WANG C, YU J L, FENG K, et al. Alkali treatment to transform natural clinoptilolite into zeolite Na–P: influence of NaOH concentration[J]. Journal of Physics and Chemistry of Solids, 2022, 168: 110827. doi: 10.1016/j.jpcs.2022.110827
[14] WANG C, YU J L, FENG K, et al. Synthesis of porous magnetic zeolite−based material and its performance on removal of Cd2+ ion and methylene blue from aqueous solution[J]. Microporous and Mesoporous Materials, 2022, 345: 112256. doi: 10.1016/j.micromeso.2022.112256
[15] LIMLAMTHONG M, LEE M, JONGSOMJIT B, et al. Solution−mediated transformation of natural zeolite to ANA and CAN topological structures with altered active sites for ethanol conversion[J]. Advanced Powder Technology, 2021, 32(11): 4155−4166. doi: 10.1016/j.apt.2021.09.018
[16] WANG C, GUO H D, LENG S Z, et al. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46(4): 330−348. doi: 10.1080/10408436.2020.1819198
-