典型共伴生矿物对黄铜矿生物浸出的影响研究进展

陈思睿, 李小龙, 杨文宇, 邓莎, 龙涛, 杨玮. 典型共伴生矿物对黄铜矿生物浸出的影响研究进展[J]. 矿产保护与利用, 2023, 43(4): 123-129. doi: 10.13779/j.cnki.issn1001-0076.2023.04.014
引用本文: 陈思睿, 李小龙, 杨文宇, 邓莎, 龙涛, 杨玮. 典型共伴生矿物对黄铜矿生物浸出的影响研究进展[J]. 矿产保护与利用, 2023, 43(4): 123-129. doi: 10.13779/j.cnki.issn1001-0076.2023.04.014
CHEN Sirui, LI Xiaolong, YANG Wenyu, DENG Sha, LONG Tao, YANG Wei. Research Progress on the Effects of Typical Co-associated Minerals on Chalcopyrite Bioleaching[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 123-129. doi: 10.13779/j.cnki.issn1001-0076.2023.04.014
Citation: CHEN Sirui, LI Xiaolong, YANG Wenyu, DENG Sha, LONG Tao, YANG Wei. Research Progress on the Effects of Typical Co-associated Minerals on Chalcopyrite Bioleaching[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 123-129. doi: 10.13779/j.cnki.issn1001-0076.2023.04.014

典型共伴生矿物对黄铜矿生物浸出的影响研究进展

  • 基金项目: 国家自然科学基金项目(52004198);大学生创新创业训练计划项目(S20220701088)
详细信息
    作者简介: 陈思睿(1999—),女,陕西宝鸡人,E-mail:chensirui3530@ 163.com
    通讯作者: 邓莎(1991—),女,陕西咸阳人,博士,副教授,主要从事微生物冶金及矿产资源综合利用研究,E-mail:dengshaxauat@ 126.com
  • 中图分类号: TD952.1;TD925+.5

Research Progress on the Effects of Typical Co-associated Minerals on Chalcopyrite Bioleaching

More Information
  • 自然界中黄铜矿与金属硫化矿物、金属氧化矿物及一些脉石矿物共伴生。在生物浸出体系中,这些共伴生矿物自身溶解出的离子与黄铜矿之间的原电池效应,以及它们的加入对黄铜矿浸出体系氧化还原电位的影响都会对黄铜矿的浸出效率产生影响。从脉石矿物、金属硫化矿物、金属氧化矿物3个方面综述了共伴生矿物对黄铜矿生物浸出影响的研究现状,旨在为提高黄铜矿浸出效率提供理论支持,并对其他难浸硫化矿的高效选别提供借鉴。

  • 加载中
  • 图 1  黄铜矿生物浸出过程中黄铁矿对氧化还原电位控制作用模型[21]

    Figure 1. 

    图 2  中等嗜热菌混合菌浸出过程中黄铜矿与斑铜矿的协同效应模型[32]

    Figure 2. 

  • [1]

    王安建. 世界资源格局与展望[J]. 地球学报, 2010, 31(5): 621−627.

    WANG A J. Global Resource Structure and Its Perspective[J]. Act Geoscientica Sinica, 2010, 31(5): 621−627.

    [2]

    PANDA S, AKCIL A, PRADHAN N, et al. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology[J]. Bioresource Technology, 2015, 196: 694−706. doi: 10.1016/j.biortech.2015.08.064

    [3]

    CóRDOBA E M, MUñOZ J A, BLáZQUEZ M L, et al. Leaching of chalcopyrite with ferric ion. Part I: General aspects[J]. Hydrometallurgy, 2008, 93(3): 81−87.

    [4]

    庄田. 含Pb、Zn、Sn复杂铜精矿槽浸过程微生物群落演替规律[D]. 长沙: 中南大学, 2012.

    ZHUANG T. Micobial community succession laws of Pb, Zn, Sn complex copper concentrate tank leaching[D]. Changsha: Central South University, 2012.

    [5]

    莫晓兰, 林海, 董颖博, 等. 石英对微生物浸出黄铜矿的作用[J]. 北京科技大学学报, 2011, 33(6): 682−687.

    MO X L, LIN H, DONG Y B, et al. Effect of quartz on bioleaching of chalcopyrite[J]. Journal of University of Science and Technology Beijing, 2011, 33(6): 682−687.

    [6]

    林海, 周闪闪, 董颖博, 等. 石英在微生物浸出黄铜矿体系中的溶出动力学[J]. 中南大学学报(自然科学版), 2015, 46(9): 3167−3175.

    LIN H, ZHOU S S, DONG Y B, et al. Dissolution kinetics of quartz in bioleaching system of chalcopyrite[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3167−3175.

    [7]

    DONG Y B, LIN H, ZHOU S, et al. Effects of quartz addition on chalcopyrite bioleaching in shaking flasks[J]. Minerals Engineering, 2013, 46/47: 177−179. doi: 10.1016/j.mineng.2013.04.014

    [8]

    莫晓兰, 林海, 傅开彬, 等. 绢云母对黄铜矿微生物浸出的影响[J]. 中国有色金属学报(英文版), 2012, 22(5): 1475−1481.

    MO X L, LIN H, FU K B, et al. Effect of sericite on bioleaching of chalcopyrite[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1475−1481.

    [9]

    许晓芳, 林海, 董颖博. 铝离子对氧化亚铁硫杆菌活性及浸出黄铜矿的影响[J]. 稀有金属, 2017, 41(8): 943−948.

    XU X F, LIN H, DONG Y B. Effect of aluminum ion on activiy of Acidthiobacillus ferrooxidans and bioleaching of chalcopyrite[J]. Chinese Journal of Rare Metals, 2017, 41(8): 943−948.

    [10]

    刘晶. pH对嗜酸氧化亚铁硫杆菌分泌胞外多聚物及其吸附性能的影响[D]. 长沙: 中南大学, 2013.

    LIU J. Effect of pH on the extracellular polymeric substances and adhesion from Acidithiobacillus ferrooxidans[D]. Changsha: Central South University, 2013.

    [11]

    周闪闪, 林海, 董颖博, 等. 磷灰石在微生物浸铜体系的溶出特性及对浸铜效率的影响[J]. 中国有色金属学报, 2014, 24(11): 2928−2934.

    ZHOU S S, LIN H, DONG Y B, et al. Dissolution characteristics of apatite in chalcopyrite bioleaching system and its influence on chalcopyrite leaching efficiency[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(11): 2928−2934.

    [12]

    HE Z, ZHONG H, HU Y, et al. Analysis of differential-expressed proteins of Acidithiobacillus ferrooxidans grown under phosphate starvation.[J]. Journal of biochemistry and molecular biology, 2005, 38(5): 545−549.

    [13]

    周闪闪. 脉石矿物在微生物浸出黄铜矿体系的溶出特性及机理研究[D]. 北京: 北京科技大学, 2016.

    ZHOU S S. Study on mechanism and dissolution characteristics of gangue minerals in bioleaching of chalcopyrite[D]. Beijing: University of Science and Technology, 2016.

    [14]

    杨晓龙. 镍黄铁矿和黄铜矿微生物浸出差异性研究[D]. 北京: 北京有色金属研究总院, 2013.

    YANG X L. Research on the difference of bioleaching between pentlandite and chalcopyrite[D]. Beijing: Ceneral Research Institute for Nonferrous Metals, 2013

    [15]

    许晓芳, 林海, 董颖博, 等. 阳离子对嗜酸氧化亚铁硫杆菌氧化活性的影响[J]. 稀有金属, 2016, 40(5): 478−484.

    XU X F, LIN H, DONG Y B, et al. Oxidation Activity of Acidthiobacillus ferrooxidans with Cation Additives[J]. Chinese Journal of Rare Metals, 2016, 40(5): 478−484.

    [16]

    李想, 温建康, 莫晓兰, 等. 浸矿微生物氟抑制机理及铁的竞争络合作用[J]. 工程科学学报, 2018, 40(10): 1223−1230.

    LI X, WEN J K, MO X L, et al. Mechanism of fluoride inhibition on bioleaching bacteria and competitive complexation of ferric ions[J]. Chinese Journal of Engineering, 2018, 40(10): 1223−1230.

    [17]

    罗小波. 微生物外膜细胞色素c介导的胞外电子传递过程与机制[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2020.

    LUO X B. The processes and mechanisms of microbial outer membrane ctype cytochrome mediated extracellular electron transfer [D]. Guangzhou: Chinese Academy of Sciences(Guangzhou Institute of Geochemiety), 2020.

    [18]

    向婉丽, 陆现彩, 陆昀乔, 等. 含方解石铜矿石微生物氧化作用的试验研究[J]. 矿物岩石地球化学通报, 2014, 33(6): 764−771.

    XIANG W L, LU X C, LU Y Q, et al. Experimental study on the microbial oxidation of chalcopyrite in calcite-boaring ore[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(6): 764−771.

    [19]

    AHMADI A, RANJBAR M, SCHAFFIE M. Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems[J]. Minerals Engineering, 2012, 34: 11−18. doi: 10.1016/j.mineng.2012.03.022

    [20]

    ZHAO H, WANG J, GAN X, et al. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum[J]. Bioresource Technology, 2015, 194: 28−35. doi: 10.1016/j.biortech.2015.07.003

    [21]

    HONG M, HUANG X, GAN X, et al. The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum[J]. Minerals Engineering, 2021, 172: 107145. doi: 10.1016/j.mineng.2021.107145

    [22]

    MEHTA A P, MURR L E. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of T. ferrooxidans(30 degrees C) and a thermophilic microorganism (55 degrees C)[J]. Biotechnology and bioengineering, 1982, 24(4): 919−940. doi: 10.1002/bit.260240413

    [23]

    MEHTA A P, MURR L E. Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides[J]. Hydrometallurgy, 1983, 9(3): 235−256. doi: 10.1016/0304-386X(83)90025-7

    [24]

    莫晓兰, 林海, 傅开彬, 等. 黄铁矿促进黄铜矿微生物浸出影响因素[J]. 北京科技大学学报, 2012, 34(7): 761−768.

    MO X L, LIN H, FU K B, et al. Influence factors of pyrite promotion on the bioleaching of chalcopyrite[J]. Journal of University of Science and Technology Beijing, 2012, 34(7): 761−768.

    [25]

    武彪, 阮仁满, 温建康, 等. 黄铁矿在生物浸矿过程中的电化学氧化行为[J]. 金属矿山, 2007(10): 64−67. doi: 10.3321/j.issn:1001-1250.2007.10.016

    WU B, RUAN R M, WEN J K, et al. Electrochemical oxidative behavior of pyrite during ore bioleaching[J]. Metal Mine, 2007(10): 64−67. doi: 10.3321/j.issn:1001-1250.2007.10.016

    [26]

    张冬艳, 张通. 细菌浸出黄铜矿过程中黄铁矿的影响行为[J]. 湿法冶金, 1997, 62(2): 4−7. doi: 10.13355/j.cnki.sfyj.1997.02.003

    ZHANG D Y, ZHANG T. Effect of pyrite on biooxidation of chalcopyrite[J]. Hydrometallutgy, 1997, 62(2): 4−7. doi: 10.13355/j.cnki.sfyj.1997.02.003

    [27]

    ZHENG X, NIE Z, JIANG Q, et al. The mechanism by which FeS2 promotes the bioleaching of CuFeS2: An electrochemical and DFT study[J]. Minerals Engineering, 2021, 173.

    [28]

    K. K, N. M. Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function[J]. Acta Crystallographica Section B, 1975, 31(9): 2268−2273. doi: 10.1107/S0567740875007376

    [29]

    P. B, K. T, E. A. The effect of mechanical activation on the thermal decomposition of chalcopyrite[J]. Journal of Thermal Analysis and Calorimetry, 2005, 35(5): 1325−1330.

    [30]

    ZHAO H, WANG J, HU M, et al. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans[J]. Bioresour Technol, 2013, 149: 71−76. doi: 10.1016/j.biortech.2013.09.035

    [31]

    ZHAO H, WANG J, GAN X, et al. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 777−787. doi: 10.1007/s12613-015-1134-7

    [32]

    WANG J, TAO L, ZHAO H, et al. Cooperative effect of chalcopyrite and bornite interactions during bioleaching by mixed moderately thermophilic culture[J]. Minerals Engineering, 2016, 95: 116−123. doi: 10.1016/j.mineng.2016.06.006

    [33]

    彭玙萍, 彭堂见, 曾伟民. 低温下YL15对黄铜矿和斑铜矿的协同浸出及电化学研究[J]. 中国有色金属学报, 2022, 32(1): 271−278.

    PENG Y P, PENG T J, ZENG W M. Synergistic bioleaching of chalcopyrite and bornite in Acidithiobacillus ferrivorans YL15 and electrochemical study at low temperature[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 271−278.

    [34]

    蒋磊. 闪锌矿的生物氧化与化学氧化对比[J]. 金属矿山, 2011(3): 84−86.

    JIANG L. Comparison of biological oxidation and chemical oxidation of sphalerite[J]. Metal Mine, 2011(3): 84−86.

    [35]

    CHEN S, QIN W Q, QIU G Z. Effect of Cu2+ ions on bioleaching of marmatite[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1518−1522. doi: 10.1016/S1003-6326(09)60035-2

    [36]

    MAXIM M, NATALYA F. Bioleaching as a method of zinc removal from copper-zinc sulfide concentrate[J]. Journal of Biotechnology, 2017, 256: 54−54.

    [37]

    XIAO Y H, LIU X D, DONG W L, et al. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process[J]. Archives of Microbiology, 2017, 199(5): 757−766. doi: 10.1007/s00203-017-1342-9

    [38]

    刘伟. 复杂硫化铜钴矿生物浸出机理及新工艺研究[D]. 沈阳: 东北大学, 2015.

    LIU W. Mechanism research and leaching technology of conplicated Cu-Co sulfide ore bioleaching[D]. Shengyang: Northeastern University, 2015.

    [39]

    HADI A, SIED Z S, MOHAMMAD N, et al. Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate[J]. International Journal of Mineral Processing, 2014, 128: 25−32. doi: 10.1016/j.minpro.2014.02.003

    [40]

    BAOJUN Y, WEN L, MAOXIN H, et al. Inhibition of hematite on acid mine drainage caused by chalcopyrite biodissolution[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 94−104.

    [41]

    MAO X C, ZHAO Y, DENG H, et al. Quantitative analysis of intrusive body morphology and its relationship with skarn mineralization— A case study of Fenghuangshan copper deposit, Tongling, Anhui, China[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 151−162. doi: 10.1016/S1003-6326(18)64648-5

    [42]

    SAAVEDRA A, GARCIA-MEZA J V, CORTON E, et al. Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching[J]. Electrochimica Acta, 2018, 265: 569−576. doi: 10.1016/j.electacta.2018.01.169

  • 加载中

(2)

计量
  • 文章访问数:  699
  • PDF下载数:  77
  • 施引文献:  0
出版历程
收稿日期:  2023-05-05
刊出日期:  2023-08-25

目录