Research Progress on Activation Mechanism of Typical Metal Ions on Mineral Flotation
-
摘要:
分析了典型金属离子(Pb2+、Cu2+、Ca2+、Fe3+和Al3+)对矿物浮选行为的影响和金属离子活化矿物浮选的机理,系统地评述了金属离子活化矿物的优缺点,并对金属离子对矿物的活化能力进行了比较。最后指出强化金属离子活化机理的基础理论研究、寻找绿色的新型金属离子活化剂是本领域未来研究的重点。本文可为矿物浮选新型活化剂的研发提供一定的参考。
Abstract:This paper analyzes the effects of typical metal ions (Pb2+, Cu2+, Ca2+, Fe3+ and Al3+) on the flotation behaviors of minerals and corresponding mechanism. Meanwhile, the merits and demerits of these metal ions on the activation of minerals are reviewed in details. Besides, the activated ability of above-mentioned metal ions on minerals flotation behaviors is analyzed. It is advisable to strengthen the basic theory of the activation mechanism of metal ions and to develop new green activators of metal ions in the future research of this field. Thus, the present paper provides some references for the development of new activators for mineral flotation.
-
Key words:
- metal ions /
- mineral flotation /
- activation mechanism /
- ability of activation
-
-
表 1 石英在不同作用体系中元素的原子轨道结合能[71]
Table 1. Atomic orbital binding energy of elements interacting with quartz and different reagents
作用体系 Si 2p Si 2s Ca 2p Fe 2p 结合能/eV 结合能/eV 结合能/eV 结合能/eV 石英 103.83 154.87 − − SDS − − − − 石英+SDS 103.86 154.67 − − 石英+ Ca2++SDS 103.21 154.13 346.93 − 石英+Fe3++SDS 103.04 154.01 − 711.16 表 2 金属原子与锂辉石矿物表面吸附后成键的布居分布值及键长[90]
Table 2. Bond population and bond length of metal atom with oxygen on spodumene surface
化学键 布居分布值 键长/nm Ca-O1 0.09 0.2053 Ca-O2 0.02 0.2337 Al-O1 0.15 0.1746 Al-O2 0.02 0.2591 Fe-O1 0.25 0.1822 Fe-O2 0.17 0.1941 (O1,O2分别表示在锂辉石晶胞(110)面不同的O原子) 表 3 ZnS与Cu2+和Pb2+作用前后接触角[91]
Table 3. Contact angle of ZnS before and after interaction with Cu2+and Pb2+
/(°) Contact angle /° ZnS+Cu2+ ZnS+Pb2+ ZnS θ左 35.2 24.6 18.9 θ右 36.8 26.4 18.9 表 4 Cu、Pb化合物溶度积常数[92]
Table 4. Solubility product constant of Cu and Pb compounds
化合物名称 pKsp PbS 27.9 CuS 35.2 Pb(OH)2 15.1 Cu(OH)2 14.0 PbX2 18.0 CuX2 26.3 表 5 与不同药剂作用后锡石接触角变化[95]
Table 5. Contact angle changes of cassiterite after interaction with different reagents
药剂 θ /(°) 1-cosθ − 33 0.16 油酸钠 126 1.59 Fe3++油酸钠 110 1.34 Cu2++油酸钠 108 1.31 Pb2++油酸钠 135 1.71 表 6 不同捕收剂下金属离子对锡石的回收率和接触角的影响[96]
Table 6. Effects of metal ions on cassiterite recovery and contact angle under different collectors
金属离子 回收率/% 接触角/(°) 捕收剂 Pb2+ +18.27 − 水杨羟肟酸 +7.07 − 油酸钠 Ca2+ −7.10 −4.67 水杨羟肟酸 −2.66 −5.17 油酸钠 Al3+ −13.08 −8.95 油酸钠 (+表示大于未添加金属离子的数值,−表示小于未添加金属离子的数值) 表 7 金属离子对黑云母的浮选效果[87]
Table 7. Effect of metal ions on the flotation recovery of biotite
金属离子 最大回收率/% Ca2+ 16.5 Pb2+ 58.67 Cu2+ 71.72 Al3+ 72.82 Fe3+ 71.36 -
[1] WANG L, SUN W, HU Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in muscovite–quartz flotation system[J]. Minerals Engineering, 2014, 64: 44−50. doi: 10.1016/j.mineng.2014.03.021
[2] KOU J, XU S, SUN T, et al. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation[J]. International Journal of Mineral Processing, 2016, 154: 24−34. doi: 10.1016/j.minpro.2016.06.008
[3] LIU B, WANG X M, H. DU H, et al. The surface features of lead activation in amyl xanthate flotation of quartz[J]. International Journal of Mineral Processing, 2016, 151: 33−39. doi: 10.1016/j.minpro.2016.04.004
[4] FORNASIERO D, J. Ralston. Cu(Ⅱ) and Ni(Ⅱ) activation in the flotation of quartz, lizardite and chlorite[J]. International Journal of Mineral Processing, 2005, 76: 75−81. doi: 10.1016/j.minpro.2004.12.002
[5] HUANG Y Q, YIN W Z, DENG R D, et al. Strengthening sulfidation flotation of hemimorphite via pretreatment with Pb2+[J]. Minerals, 2019, 9(8): 463. doi: 10.3390/min9080463
[6] 盛洁, 刘全军, 董敬申, 等. 典型金属离子对黄铜矿浮选效果的影响研究进展[J]. 应用化工, 2022, 51(2): 557−562.
SHENG J, LIU Q J, DONG J S, et al. Research progress on the effect of typical metal ions on chalcopyrite flotation[J]. Applied Chemical Industry, 2022, 51(2): 557−562.
[7] PENG H. Q, LUO W, BIE X X, et al. Study on the effect of Fe3+ on zircon flotation separation from cassiterite using sodium oleate as collector[J]. Minerals, 2017, 7: 18.
[8] 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868.
GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868.
[9] 周瑜林, 王毓华, 胡岳华, 等. 金属离子对一水硬铝石和高岭石浮选行为的影响[J]. 中南大学学报(自然科学版), 2009, 40(2): 268−274.
ZHOU Y M, WANG Y H, HU Y H, et al. Influence of metal ions on floatability of diaspore and kaolinite[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 268−274.
[10] 王亮, 李育彪, 李万青. 不同价态杂质离子对黄铜矿浮选的影响机理研究[J]. 金属矿山, 2018(12): 84−88.
WANG L, LI Y B, LI W Q. Influencing mechanism of ions with different valence on chalcopyrite flotation[J]. Metal Mine, 2018(12): 84−88.
[11] WANG B, PENG Y J. The interaction of clay minerals and saline water in coarse coal flotation[J]. Fuel, 2014, 134: 326−332. doi: 10.1016/j.fuel.2014.05.085
[12] LI G S, DENG L J, CAO Y J, et al. Effect of sodium chloride on fine coal flotation and discussion based on froth stability and particle coagulation[J]. International Journal of Mineral Processing, 2017, 169: 47−52. doi: 10.1016/j.minpro.2017.10.008
[13] LI Y B, LI W Q, XIAO Q, et al. The influence of common monovalent and divalent chlorides on chalcopyrite flotation[J]. Minerals, 2017, 7(7): 111−111. doi: 10.3390/min7070111
[14] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.35. WANG D Z, HU Y H. Flotation solution chemistry[M]. Changsha: Hunan Science and Technology Press, 1988.35.
[15] 王雪伟. 极硬水对煤泥浮选的影响研究[D]. 北京: 中国矿业大学, 2015
WANG X W. Research on the effect of extremely hard water on slime flotation[D]. Beijing: China University of Mining and Technology, 2015.
[16] 付鹏, 李解, 李保卫, 等. 某选矿厂工业回水中离子对黄铁矿浮选的影响机制[J]. 稀有金属, 2017, 41(7): 792−798.
FU P, LI J, LI B W, et al. Influence mechanism of ions in industry backwater of concentrator on floatability of pyrite[J]. Chinese Journal of Rare Metals, 2017, 41(7): 792−798.
[17] CASTRO S, MIRANDA CToledo P, et al. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater[J]. International Journal of Mineral Processing, 2013, 124: 8−14. doi: 10.1016/j.minpro.2013.07.002
[18] SERGIO C, LASKOWSKI JS. Froth flotation in saline water[J]. KONA Powder and Particle Journal, 2011, 29: 4−15. doi: 10.14356/kona.2011005
[19] ROWSON X. The effect of Pb(NO3)2 on ilmenite flotation[J]. Minerals Engineering, 2000(2): 205−215.
[20] YU L, XIN Y, YUAN Z T, et al. Effect of lead ions on the selective flotation of ilmenite against titanaugite using octyl hydroxamic acid as collector[J]. Applied Surface Science, 2022, 603: 154458.
[21] FENG Q C, WANG M L, ZHANG G, et al. Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification[J]. Separation and Purification Technology, 2023, 307.
[22] YAO W, LI M L, ZHANG M, et al. Effects of Pb2+ ions on the flotation behavior of scheelite, calcite, and fluorite in the presence of water glass[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 127826.
[23] LIU C, ZHANG C, SONG S X, et al. Study on the activation mechanism of lead ions in wolframite flotation using benzyl hydroxamic acid as the collector[J]. Minerals Engineering, 2019, 141: 105859.
[24] FANG S, XU L H, WU H Q, et al. Adsorption of Pb(Ⅱ)/benzohydroxamic acid collector complexes for ilmenite flotation[J]. Minerals Engineering, 2018, 126: 16−23.
[25] 卫召, 韩海生, 胡岳华, 等. Pb-BHA配位捕收剂的黑白钨混合常温浮选研究[J]. 有色金属工程, 2017, 7(6): 70-75
WEI Z, HAN H S, HU Y H, et al. Flotation of wolframite and scheelite at the room temperature based on Pb-BHA coordination collector[J]. Nonferrous Metals Engineering, 2017, 7(6): 70-75.
[26] 黄伟生, 徐涛, 韩海生, 等. 苯甲羟肟酸铅体系与脂肪酸体系钨矿浮选原理及其应用[J]. 金属矿山, 2019(8): 63−70.
HUANG W S, XU T, HAN H S, et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice[J]. Metal Mine, 2019(8): 63−70.
[27] LI H Q, MU S X, WENG X Q, et al. Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 506: 431−437. doi: 10.1016/j.colsurfa.2016.06.046
[28] FENG Q C, ZHAO W J, WEN S M, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector[J]. Separation and Purification Technology, 2017, 178: 193−199. doi: 10.1016/j.seppur.2017.01.053
[29] 欧乐明, 黄思捷, 朱阳戈. 硫化矿浮选体系中金属离子对石英浮选行为的影响[J]. 中南大学学报(自然科学版), 2012, 43(2): 407−411.
OU L M, HUANG S J, ZHU Y G. Influence of metal ions on floatability of quartz in flotation of sulfide ores[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 407−411.
[30] 欧乐明, 曾维伟, 冯其明, 等. Zn2+、Cu2+对菱锌矿和石英浮选的影响及作用机理[J]. 有色金属(选矿部分), 2011(5): 53−57.
OU L M, ZENG W W, FENG Q M, et al. Influence and mechanism of zine and copper ion on flotation of smithsonite and quarte[J]. Nonferrous Metals(Minerals Processing Section), 2011(5): 53−57.
[31] TRAHAR W J, SENIOR G D, HEYES G W, et al. The activation of sphalerite by lead — a flotation perspective[J]. International Journal of Mineral Processing, 1997, 49: 121−148. doi: 10.1016/S0301-7516(96)00041-5
[32] 黄裕卿, 邓荣东, 印万忠, 等. 黄药体系下铅离子诱导异极矿强化硫化浮选及其机理[J]. 中国有色金属学报, 2020, 30(9): 2224−2233. doi: 10.11817/j.ysxb.1004.0609.2020-35857
HUANG Y Q, DENG R D, YING W Z, et al. Lead ions induced strengthening sulfidation-flotation of hemimorphite in xanthate system and its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 2224−2233. doi: 10.11817/j.ysxb.1004.0609.2020-35857
[33] 张国范, 张凤云. 浮选过程中金属离子对异极矿硫化的影响[J]. 中南大学学报(自然科学版), 2017, 48(7): 1689−1696.
ZHANG G F, ZHANG F Y. Effect of metal ions on sulfiding flotation of hemimorphite[J]. Journal of Central South University of Science and Technology, 2017, 48(7): 1689−1696.
[34] 邹坚坚. 富银铅锌矿浮选分离试验研究[D]. 长沙: 中南大学, 2013
ZOU J J. Research on the flotation separation of rich sliver lead-zine ore[D]. Changsha: Central South University, 2013.
[35] RALSTON J, HEALY T W. Activation of zinc sulphide with CuⅡ, CdⅡ and PbⅡ: I activation in weakly acidic media[J]. International Journal of Mineral Processing, 1980, 7(3): 175−201. doi: 10.1016/0301-7516(80)90016-2
[36] POPOV S R, VUINI D R, STROJEK J W, et al. Effect of dissolved lead ions on the ethylxanthate adsorption on sphalerite in weakly acidic media[J]. International Journal of Mineral Processing, 1989, 27(1/2): 51−62. doi: 10.1016/0301-7516(89)90005-7
[37] HOUOT R, RAVENEAU P. Activation of sphalerite flotation in the presence of lead ions[J]. International Journal of Mineral Processing, 1992, 35(3/4): 253−271. doi: 10.1016/0301-7516(92)90037-W
[38] LIU J, EJTEMAEI M, NGUYEN A V, et al. Surface chemistry of pb-activated sphalerite[J]. Minerals Engineering, 2020, 145: 106058−106058. doi: 10.1016/j.mineng.2019.106058
[39] 唐箫琴, 刘小妹, 陈晔. 闪锌矿表面铅活化及黄药吸附的密度泛函理论研究[J]. 有色金属工程, 2021(11): 90−95.
TANG X Q, LIU X M, CHEN Y. CHEN Y. Density function theory(DFT) study on lead activation and adsorption on sphalerite surface[J]. Nonferrous Metals Engineering, 2021(11): 90−95.
[40] FUERSTENAU M C, HAN K N. Metal-surfactant precipitation and adsorption in froth flotation[J]. Journal of Colloid and Interface Science, 2002, 256: 175−182. doi: 10.1006/jcis.2001.8089
[41] 王淀佐, 胡岳华. 氢氧化物表面沉淀在石英浮选中的作用[J]. 中南矿冶学院学报, 1990(3): 248−253.
WANG D Z, HU Y H. The investigation of role of surface precipitation of meta hydroxide in flotation of quartz[J]. Journal of Central South University, 1990(3): 248−253.
[42] HAN H S, LIU W I, HU Y H, et al. A novel flotation scheme: selective flotation of tungsten minerals from calcium minerals using Pb–BHA complexes in shizhuyuan[J]. Rare Metals, 2017, 36(6): 533−540. doi: 10.1007/s12598-017-0907-8
[43] 宫贵臣, 刘杰, 韩跃新, 等. 铜离子对锡石浮选的影响及其机理研究[J]. 金属矿山, 2019(2): 102−105.
GONG G C, LIU J, HAN Y X, et al. Study on the effect and mechanism of Cu2+ on cassiterite flotation[J]. Metal Mine, 2019(2): 102−105.
[44] 汪泰, 刘殿文, 王成行, 等. 水杨羟肟酸体系下铜离子活化浮选锡石作用机制[J]. 中国有色金属学报, 2022
WANG T, LIU D W, WANG C H, et al. Mechanism of activated flotation of cassiterite by copper ion in salicylhydroxamic acid system[J]. Chinese Journal of Nonferrous Metals, 2022.
[45] 王宇斌, 文堪, 张鲁. 利用铜离子改善油酸钠体系下白云母的可浮性[J]. 矿产保护与利用, 2017(6): 45-51
WANG Y B, WEN K, ZHANG L. The floatability of muscovite in sodium oleate system was improved by copper ion[J] Conservation and Utilization of Mineral Resources, 2017(6): 45-51.
[46] 张波, 李解, 张雪峰, 等. Cu2+, Fe3+对萤石浮选的活化作用机制[J]. 稀有金属, 2016, 40(9): 963−968.
ZHANG B, LI J, ZHANG X F, et al. Activation and mechanism of Cu2+ and Fe3+ in flotation system of fluorite ore[J]. Chinese Journal of Rare Metal, 2016, 40(9): 963−968.
[47] DENG J S, WENG S M, LIU J, et al. Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3955−3963. doi: 10.1016/S1003-6326(14)63556-1
[48] 邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013
DENG J S. The release of chalcopyrite fluid inclusion components and their interaction with the relaxed surface[D]. Kunming: Kunming University of Science and Technology, 2013.
[49] 张芹, 胡岳华, 顾帼华, 等. 铁闪锌矿的浮选行为及其表面吸附机理[J]. 中国有色金属学报, 2004(4): 676−680.
ZHANG Q, HU Y H, GU G H, et al. Mechanism of Cu2+ ion activation flotation of marmatite in absence and presence of ethyl xanthate[J]. Chinese Journal of Nonferrous Metals, 2004(4): 676−680.
[50] FINKELSTEIN N P. The activation of sulphide minerals for flotation: a review[J]. International Journal of Mineral Processing, 1997, 52(2): 81−120.
[51] BUCKLEY A N, SKINNER S L, HARMER S L, et al. Examination of the proposition that Cu(Ⅱ) can be required for charge neutrality in a sulfide lattice — Cu in tetrahedrites and sphalerite[J]. Canadian journal of Chemistry, 2007, 85(10): 767−781. doi: 10.1139/v07-078
[52] 余润兰, 邱冠周, 胡岳华, 等. Cu2+活化铁闪锌矿的电化学[J]. 金属矿山, 2004(2): 35−37+40. doi: 10.3321/j.issn:1001-1250.2004.02.011
YU R L, QIU G Z, HU Y H, et al. Electrochemical activation of sphalerite by Cu2+[J]. Metal Mines, 2004(2): 35−37+40. doi: 10.3321/j.issn:1001-1250.2004.02.011
[53] ZHOU C, YOON R H. Electrochemistry of copper activation of sphalerite at pH 9.2[J]. International Journal of Mineral Processing, 2000, 58(1): 57−66.
[54] KARTIO I J, YOON R H, BASILIO C I. An XPS study of sphalerite activation by copper[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 1998, 14(18): 5274−5278. doi: 10.1021/la970440c
[55] PRESTIDGE C A, THIEL A G, RALSTON J, et al. The interaction of ethyl xanthate with copper(Ⅱ)-activated zinc sulphide: kinetic effects[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1994, 85(1): 51−68.
[56] GERSON A R, LANGE A G, PRINCE K E, et al. The mechanism of copper activation of sphalerite[J]. Appl Surf Sci, 1999, 137(1): 207−223.
[57] 李佳磊, 宋凯伟, 刘殿文, 等. 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018, 18(1): 11−19.
LI J L, SONG G W, LIU D W, et al. Research progress on activation and deactivation of sphalerite flotation[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 11−19.
[58] 张德文. 金属离子对铜蓝和黄铁矿浮选行为的影响[J]. 有色金属, 2018(3): 92−96.
ZHANG D W. The effect of metal ions on the flotation behavior of copper blue and pyrite[J]. Nonferrous Metals, 2018(3): 92−96.
[59] EJTEMAEI M, NGUYEN A V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals Engineering, 2017, 100: 223−232. doi: 10.1016/j.mineng.2016.11.005
[60] WEISENER C, GERSON A. Cu(Ⅱ) adsorption mechanism on pyrite: an XAFS and XPS study[J]. Surface and Interface Analysis, 2000, 30(1): 454−458. doi: 10.1002/1096-9918(200008)30:1<454::AID-SIA807>3.0.CO;2-1
[61] DAI P L, WEI Z C, CHEN L Z, et al. Adsorption of butyl xanthate on arsenopyrite (001) and Cu2+-activated arsenopyrite (001) surfaces: A DFT study[J]. Chemical Physics, 2022, 562.
[62] ALBRECHT T, W. J, ALBRECHT, ADDAI-MENSAH J, et al. Critical copper concentration in sphalerite flotation: effect of temperature and collector[J]. International Journal of Mineral Processing, 2016, 146: 15-22.
[63] CHANDRA A P, PUSKAR L, SIMPSON D J, et al. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation[J]. International Journal of Mineral Processing, 2012, 114/115/116/117: 16−26. doi: 10.1016/j.minpro.2012.08.003
[64] 陈琳璋, 侯清麟, 银锐明, 等. 钙离子影响十二烷基磺酸钠捕收石英的机理研究[J]. 湖南工业大学学报, 2012, 26(6): 8-12.
CHEN L Z, HOU Q L , YIN R M, et al. The mechanism of calcium ions effects on quartz collection in the system of dodecyl sulphonate[J]. Journal of Hunan University of Technology, 2012, 26(6): 8-12.
[65] 张晋霞, 冯雅丽, 牛福生. 矿浆中金属离子对蓝晶石矿物浮选行为的影响[J]. 东北大学学报(自然科学版), 2014, 35(12): 1787−1791. doi: 10.12068/j.issn.1005-3026.2014.12.026
ZHANG J X, FENG Y L, NIU F S. Influence of metal ions in pulp on floatability of kyanite minerals[J]. Journal of Northeastern University. Natural Science, 2014, 35(12): 1787−1791. doi: 10.12068/j.issn.1005-3026.2014.12.026
[66] HUANG W X, LIU W B, ZHONG W L, et al. Effects of common ions on the flotation of fluorapatite and dolomite with oleate collector[J]. Minerals Engineering, 2021, 174: 107213.
[67] DáVILA-PULIDO I G, URIBE-SALAS A, áLVAREZ-SILVA METAL. The role of calcium in xanthate adsorption onto sphalerite[J]. Minerals Engineering, 2015, 71: 113−119. doi: 10.1016/j.mineng.2014.09.004
[68] 郭玉, 寇珏, 孙体昌, 等. 十二烷基磺酸钠和月桂酸在石英表面的吸附机理研究[J]. 矿冶工程, 2015, 35(2): 50-54.
GUO Y, KOU J, SUN T C, et al. Adsorption mechanism of sodium dodecyl sulfate and lauric acid on quartz by QCM-D[J]. Mining and Metallurgical Engineering, 2015, 71: 113-119.
[69] 石云良, 邱冠周, 胡岳华, 等. 石英浮选中的表面化学反应[J]. 矿冶工程, 2001(3): 43−45+48.
SHI Y L, QIU G Z, HU Y H, et al. Surface chemical reactions in oleate flotation quartz[J]. Mining and Metallurgical Engineering, 2001(3): 43−45+48.
[70] 从金瑶, 王维清, 林一明, 等. 油酸钠体系下钙离子活化石英浮选机理研究[J]. 非金属矿, 2018, 41(6): 77−79.
CONG J Y, WANG W Q, LIN Y M, et al. Flotation mechanism of calcium ion activation quartz in system of sodium oleate[J]. Non-metallic Mines, 2018, 41(6): 77−79.
[71] 刘荣祥, 李解, 苏文柔, 等. 红外光谱、XPS分析比较Ca2+, Fe3+对石英的活化机理[J]. 光谱学与光谱分析, 2020, 40(6): 1876−1882.
LIU R X, LI J, SU W R, et al. FTIR and XPS analysis comparing the activation mechanism of Ca2+ and Fe3+ on quartz[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1876−1882.
[72] 卯松, 何晓太, 张覃. 钙离子对胶磷矿和白云石可浮性的影响研究[J]. 矿冶工程, 2013, 33(4): 56−58.
MAO S, HE X T, ZHANG Q. Study of influence of calcium ion on floatability of colloiphanite and dolomite under the presence of inorganic anions[J]. Mining and Metallurgical Engineering, 2013, 33(4): 56−58.
[73] 王宇斌, 文堪, 张鲁, 等. Ca2+与白云母作用机理的XPS分析[J]. 矿物学报, 2018, 38(4): 462−468.
WANG Y B, WEN K, ZHAN L, et al. XPS analysis of interaction mechanism between Ca2+ and Muscovite[J]. Journal of Mineralogy, 2018, 38(4): 462−468.
[74] 曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109−117.
ZENG Y, LIU J, WANG Y, et al. Research progress on the influence of typical metal ions on the flotation behavior of sphalerite and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109−117.
[75] 唐劭禹, 张凌燕, 张冲, 等. Fe3+对十二烷基磺酸钠捕收石英的活化作用研究[J]. 非金属矿, 2017, 40(5): 79−81.
TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non-Metallic Mines, 2017, 40(5): 79−81.
[76] 欧乐明, 叶家笋, 曾维伟, 等. 铁离子和亚铁离子对菱锌矿和石英浮选的影响[J]. 有色金属(选矿部分), 2012(6): 79−82.
OU L M, YE J S, ZENG W W, et al. The influence of iron and ferrous ions on the flotation of siderite and quartz[J]. Nonferrous Metals (Mineral Processing Section), 2012(6): 79−82.
[77] 班小淇, 顾畔, 印万忠, 等. 菱镁矿浮选体系中Fe3+对白云石的选择性活化及机理分析[J]. 矿产综合利用, 2022(5): 125-129.
BAN X Q, GU P, YIN W Z, et al. Selective activation of dolomite by Fe3+ in magnesite flotation system and its mechanism analysis[J]. Comprehensive Utilization of Mineral Resources, 2022(5): 125−129.
[78] 王宇斌, 雷大士, 张小波, 等. 油酸钠体系下Fe3+与白云母的作用机理研究[J]. 硅酸盐通报, 2018, 37(4): 1435−1440.
WANG Y B, LEI D S, ZHANG X B, et al. Interaction mechanism of Fe3+ with Muscovite in sodium oleate system[J]. Silicate Bulletin, 2018, 37(4): 1435−1440.
[79] ZHENG Q, QIAN Y, ZOU D, et al. Surface mechanism of Fe3+ions on the improvement of fine monazite flotation with octyl hydroxamate as the collector[J]. Frontiers in Chemistry, 2021, 9: 700347. doi: 10.3389/fchem.2021.700347
[80] ZENG W W, ZHANG Q F, SHI Q, et al. Effects and mechanism of Fe3+ on flotation separation of feldspar and epidote with sodium oleate at natural pH[J]. Separations, 2022, 9: 110.
[81] ZHANG J, WANG W Q, LIU J, et al. Fe(Ⅲ) as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Minerals Engineering, 2014, 61: 16−22. doi: 10.1016/j.mineng.2014.03.004
[82] XIE R Q, ZHU YM, LIU J, et al. Effects of metal ions on the flotation separation of spodumene from feldspar and quartz[J]. Minerals Engineering, 2021, 168: 106931.
[83] 于洋, 宋磊, 周少珍, 等. 多价金属阳离子对几种含钙盐类矿物可浮性的影响[J]. 化工矿物与加工, 2015, 44(9): 9−13.
YU Y, SONG L, ZHOU S Z, et al. Influence of multivalent metal cations on floatability of several calcium salt minerals[J]. Industrial Minerals and Processing, 2015, 44(9): 9−13.
[84] 曾维伟, 刘旭. 铝离子对长石和绿帘石浮选的影响及其作用机理[J]. 矿冶工程, 2021, 41(6): 56−60+64.
ZENG W W, LIU X. Effect and mechanism of Al3+ on flotation of feldspar and epidote[J]. Mining and Metallurgical Engineering, 2021, 41(6): 56−60+64.
[85] 陈俐全, 张凌燕, 陈志强, 等. 铝离子对油酸钠浮选石英的影响及作用机理简[J]. 金属矿山, 2018(1): 120−124.
CHEN L Q, ZHANG L Y, CHEN Z Q, et al. Effect and mechanism of aluminum ion on quartz flotation in the system of sodium oleate[J]. Metal Mine, 2018(1): 120−124.
[86] 陈荩, 陈万雄, 孙中溪. 金属离子活化石英的判据及规律[J]. 金属矿山, 1982(6): 30−33+56.
CHEN J, CHEN W X, SUN Z X. Criterion and law of metal ions activated quartz[J]. Metal Mine, 1982(6): 30−33+56.
[87] 沙惠雨, 刘长淼, 方霖, 等. 常见金属阳离子对黑云母浮选行为影响研究[J]. 金属矿山, 2017(1): 94−98.
SHA H Y, IIU C M, FANG L, et al. Effect of metallic cations on floatability performance of pure biotite[J]. Metal Mine, 2017(1): 94−98.
[88] 印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17-22
YIN W Z, SUN C Y, Review on research status on flotation principles of silicate mineral[J]. Conservation and Utilization of Mineral Resources, 2001(3): 17-22.
[89] 林慧博, 印万忠, 孙传尧. 硅酸盐矿物表面金属离子吸附规律的XPS分析[J]. 有色矿冶, 2003(3): 21−24.
LIN H B, YIN W Z, SUN C Y. XPS analysis on adsorption law of metal ion on surface of silicate minerals[J]. Non-ferrous Mining and Metallurgy, 2003(3): 21−24.
[90] 于福顺, 孙永峰, 蒋曼, 等. 金属阳离子在锂辉石浮选中的活化行为及作用机理[J]. 中国有色金属学报, 2021, 31(1): 203−210.
YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. Chinese Journal of Nonferrous Metals, 2021, 31(1): 203−210.
[91] 廉会良, 范迎菊, 李娜, 等. Cu2+和Pb2+对硫化锌矿物表面的活化作用[J]. 济南大学学报(自然科学版), 2013, 27(1): 63−66.
LAN H L, FAN Y J, LI N, et al. Activation of Cu2+ and Pb2+ on the surface of zinc sulfide minerals[J]. Journal of Ji’nan University (Natural Science Edition), 2013, 27(1): 63−66.
[92] 朱一民, 周菁. 金属阳离子活化雌黄的浮选及机理[J]. 有色矿山, 2001(1): 28−31+36.
ZHU Y M, ZHO Q. Flotation and mechanism of metal cation activated female yellow[J]. Non-ferrous Mines, 2001(1): 28−31+36.
[93] 高玚. 硅钙条件下新型捕收剂浮选微细粒锡石试验研究及应用[D]. 南宁: 广西大学, 2022
GAO Y. Experimental study and application of new collector in flotation of fine cassiterite under silica-calcium condition[D]. Nanning: Guangxi University, 2022.
[94] 张周位. 锡石浮选体系中金属离子作用机理及其应用[D]. 长沙: 中南大学, 2013
ZHANG Z W. Study on the mechanism and application of metal ions in cassiterite flotation system[D]. Changsha: Centra South University, 2013.
[95] 宫贵臣, 刘杰, 韩跃新. 金属离子对微细粒锡石浮选行为的影响[J]. 矿产综合利用, 2016(4): 43−47. doi: 10.3969/j.issn.1000-6532.2016.04.010
GONG G C, LIU J, HAN Y X. Effect of metal ions on flotation behaviors of fine cassiterite[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 43−47. doi: 10.3969/j.issn.1000-6532.2016.04.010
[96] 陈禹蒙. 锡石与方解石、斜绿泥石的浮选分离基础研究[D]. 昆明: 昆明理工大学, 2019
CHEN Y M. Basic research on flotation separation of cassiterite, calcite clinochlore[D]. Kunming: Kunming university of Science and Technology, 2019.
-