典型金属离子活化矿物浮选机理研究进展

余安美, 丁湛, 李颉, 袁加巧, 柏少军. 典型金属离子活化矿物浮选机理研究进展[J]. 矿产保护与利用, 2023, 43(4): 114-122. doi: 10.13779/j.cnki.issn1001-0076.2023.04.013
引用本文: 余安美, 丁湛, 李颉, 袁加巧, 柏少军. 典型金属离子活化矿物浮选机理研究进展[J]. 矿产保护与利用, 2023, 43(4): 114-122. doi: 10.13779/j.cnki.issn1001-0076.2023.04.013
YU Anmei, DING Zhan, LI Jie, YUAN Jiaqiao, BAI Shaojun. Research Progress on Activation Mechanism of Typical Metal Ions on Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 114-122. doi: 10.13779/j.cnki.issn1001-0076.2023.04.013
Citation: YU Anmei, DING Zhan, LI Jie, YUAN Jiaqiao, BAI Shaojun. Research Progress on Activation Mechanism of Typical Metal Ions on Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 114-122. doi: 10.13779/j.cnki.issn1001-0076.2023.04.013

典型金属离子活化矿物浮选机理研究进展

  • 基金项目: 国家自然科学基金项目(52164021)
详细信息
    作者简介: 余安美(1998—),女,硕士研究生,研究方向为浮选理论与工艺。E-mail:yuanmei199805@126.com
    通讯作者: 柏少军(1983—),男,教授,博士生导师,研究方向为浮选理论与资源综合利用。E-mail:baishaojun830829@126.com
  • 中图分类号: TD923+.14

Research Progress on Activation Mechanism of Typical Metal Ions on Mineral Flotation

More Information
  • 分析了典型金属离子(Pb2+、Cu2+、Ca2+、Fe3+和Al3+)对矿物浮选行为的影响和金属离子活化矿物浮选的机理,系统地评述了金属离子活化矿物的优缺点,并对金属离子对矿物的活化能力进行了比较。最后指出强化金属离子活化机理的基础理论研究、寻找绿色的新型金属离子活化剂是本领域未来研究的重点。本文可为矿物浮选新型活化剂的研发提供一定的参考。

  • 加载中
  • 表 1  石英在不同作用体系中元素的原子轨道结合能[71]

    Table 1.  Atomic orbital binding energy of elements interacting with quartz and different reagents

    作用体系Si 2pSi 2sCa 2pFe 2p
    结合能/eV结合能/eV结合能/eV结合能/eV
    石英103.83154.87
    SDS
    石英+SDS103.86154.67
    石英+ Ca2++SDS103.21154.13346.93
    石英+Fe3++SDS103.04154.01711.16
    下载: 导出CSV

    表 2  金属原子与锂辉石矿物表面吸附后成键的布居分布值及键长[90]

    Table 2.  Bond population and bond length of metal atom with oxygen on spodumene surface

    化学键布居分布值键长/nm
    Ca-O10.090.2053
    Ca-O20.020.2337
    Al-O10.150.1746
    Al-O20.020.2591
    Fe-O10.250.1822
    Fe-O20.170.1941
    (O1,O2分别表示在锂辉石晶胞(110)面不同的O原子)
    下载: 导出CSV

    表 3  ZnS与Cu2+和Pb2+作用前后接触角[91]

    Table 3.  Contact angle of ZnS before and after interaction with Cu2+and Pb2+ /(°)

    Contact angle /°ZnS+Cu2+ZnS+Pb2+ZnS
    θ35.224.618.9
    θ36.826.418.9
    下载: 导出CSV

    表 4  Cu、Pb化合物溶度积常数[92]

    Table 4.  Solubility product constant of Cu and Pb compounds

    化合物名称pKsp
    PbS27.9
    CuS35.2
    Pb(OH)215.1
    Cu(OH)214.0
    PbX218.0
    CuX226.3
    下载: 导出CSV

    表 5  与不同药剂作用后锡石接触角变化[95]

    Table 5.  Contact angle changes of cassiterite after interaction with different reagents

    药剂θ /(°)1-cosθ
    330.16
    油酸钠1261.59
    Fe3++油酸钠1101.34
    Cu2++油酸钠1081.31
    Pb2++油酸钠1351.71
    下载: 导出CSV

    表 6  不同捕收剂下金属离子对锡石的回收率和接触角的影响[96]

    Table 6.  Effects of metal ions on cassiterite recovery and contact angle under different collectors

    金属离子回收率/%接触角/(°)捕收剂
    Pb2++18.27水杨羟肟酸
    +7.07油酸钠
    Ca2+−7.10−4.67水杨羟肟酸
    −2.66−5.17油酸钠
    Al3+−13.08−8.95油酸钠
    (+表示大于未添加金属离子的数值,−表示小于未添加金属离子的数值)
    下载: 导出CSV

    表 7  金属离子对黑云母的浮选效果[87]

    Table 7.  Effect of metal ions on the flotation recovery of biotite

    金属离子最大回收率/%
    Ca2+16.5
    Pb2+58.67
    Cu2+71.72
    Al3+72.82
    Fe3+71.36
    下载: 导出CSV
  • [1]

    WANG L, SUN W, HU Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in muscovite–quartz flotation system[J]. Minerals Engineering, 2014, 64: 44−50. doi: 10.1016/j.mineng.2014.03.021

    [2]

    KOU J, XU S, SUN T, et al. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation[J]. International Journal of Mineral Processing, 2016, 154: 24−34. doi: 10.1016/j.minpro.2016.06.008

    [3]

    LIU B, WANG X M, H. DU H, et al. The surface features of lead activation in amyl xanthate flotation of quartz[J]. International Journal of Mineral Processing, 2016, 151: 33−39. doi: 10.1016/j.minpro.2016.04.004

    [4]

    FORNASIERO D, J. Ralston. Cu(Ⅱ) and Ni(Ⅱ) activation in the flotation of quartz, lizardite and chlorite[J]. International Journal of Mineral Processing, 2005, 76: 75−81. doi: 10.1016/j.minpro.2004.12.002

    [5]

    HUANG Y Q, YIN W Z, DENG R D, et al. Strengthening sulfidation flotation of hemimorphite via pretreatment with Pb2+[J]. Minerals, 2019, 9(8): 463. doi: 10.3390/min9080463

    [6]

    盛洁, 刘全军, 董敬申, 等. 典型金属离子对黄铜矿浮选效果的影响研究进展[J]. 应用化工, 2022, 51(2): 557−562.

    SHENG J, LIU Q J, DONG J S, et al. Research progress on the effect of typical metal ions on chalcopyrite flotation[J]. Applied Chemical Industry, 2022, 51(2): 557−562.

    [7]

    PENG H. Q, LUO W, BIE X X, et al. Study on the effect of Fe3+ on zircon flotation separation from cassiterite using sodium oleate as collector[J]. Minerals, 2017, 7: 18.

    [8]

    高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868.

    GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868.

    [9]

    周瑜林, 王毓华, 胡岳华, 等. 金属离子对一水硬铝石和高岭石浮选行为的影响[J]. 中南大学学报(自然科学版), 2009, 40(2): 268−274.

    ZHOU Y M, WANG Y H, HU Y H, et al. Influence of metal ions on floatability of diaspore and kaolinite[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 268−274.

    [10]

    王亮, 李育彪, 李万青. 不同价态杂质离子对黄铜矿浮选的影响机理研究[J]. 金属矿山, 2018(12): 84−88.

    WANG L, LI Y B, LI W Q. Influencing mechanism of ions with different valence on chalcopyrite flotation[J]. Metal Mine, 2018(12): 84−88.

    [11]

    WANG B, PENG Y J. The interaction of clay minerals and saline water in coarse coal flotation[J]. Fuel, 2014, 134: 326−332. doi: 10.1016/j.fuel.2014.05.085

    [12]

    LI G S, DENG L J, CAO Y J, et al. Effect of sodium chloride on fine coal flotation and discussion based on froth stability and particle coagulation[J]. International Journal of Mineral Processing, 2017, 169: 47−52. doi: 10.1016/j.minpro.2017.10.008

    [13]

    LI Y B, LI W Q, XIAO Q, et al. The influence of common monovalent and divalent chlorides on chalcopyrite flotation[J]. Minerals, 2017, 7(7): 111−111. doi: 10.3390/min7070111

    [14]

    王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.35. WANG D Z, HU Y H. Flotation solution chemistry[M]. Changsha: Hunan Science and Technology Press, 1988.35.

    [15]

    王雪伟. 极硬水对煤泥浮选的影响研究[D]. 北京: 中国矿业大学, 2015

    WANG X W. Research on the effect of extremely hard water on slime flotation[D]. Beijing: China University of Mining and Technology, 2015.

    [16]

    付鹏, 李解, 李保卫, 等. 某选矿厂工业回水中离子对黄铁矿浮选的影响机制[J]. 稀有金属, 2017, 41(7): 792−798.

    FU P, LI J, LI B W, et al. Influence mechanism of ions in industry backwater of concentrator on floatability of pyrite[J]. Chinese Journal of Rare Metals, 2017, 41(7): 792−798.

    [17]

    CASTRO S, MIRANDA CToledo P, et al. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater[J]. International Journal of Mineral Processing, 2013, 124: 8−14. doi: 10.1016/j.minpro.2013.07.002

    [18]

    SERGIO C, LASKOWSKI JS. Froth flotation in saline water[J]. KONA Powder and Particle Journal, 2011, 29: 4−15. doi: 10.14356/kona.2011005

    [19]

    ROWSON X. The effect of Pb(NO3)2 on ilmenite flotation[J]. Minerals Engineering, 2000(2): 205−215.

    [20]

    YU L, XIN Y, YUAN Z T, et al. Effect of lead ions on the selective flotation of ilmenite against titanaugite using octyl hydroxamic acid as collector[J]. Applied Surface Science, 2022, 603: 154458.

    [21]

    FENG Q C, WANG M L, ZHANG G, et al. Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification[J]. Separation and Purification Technology, 2023, 307.

    [22]

    YAO W, LI M L, ZHANG M, et al. Effects of Pb2+ ions on the flotation behavior of scheelite, calcite, and fluorite in the presence of water glass[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 127826.

    [23]

    LIU C, ZHANG C, SONG S X, et al. Study on the activation mechanism of lead ions in wolframite flotation using benzyl hydroxamic acid as the collector[J]. Minerals Engineering, 2019, 141: 105859.

    [24]

    FANG S, XU L H, WU H Q, et al. Adsorption of Pb(Ⅱ)/benzohydroxamic acid collector complexes for ilmenite flotation[J]. Minerals Engineering, 2018, 126: 16−23.

    [25]

    卫召, 韩海生, 胡岳华, 等. Pb-BHA配位捕收剂的黑白钨混合常温浮选研究[J]. 有色金属工程, 2017, 7(6): 70-75

    WEI Z, HAN H S, HU Y H, et al. Flotation of wolframite and scheelite at the room temperature based on Pb-BHA coordination collector[J]. Nonferrous Metals Engineering, 2017, 7(6): 70-75.

    [26]

    黄伟生, 徐涛, 韩海生, 等. 苯甲羟肟酸铅体系与脂肪酸体系钨矿浮选原理及其应用[J]. 金属矿山, 2019(8): 63−70.

    HUANG W S, XU T, HAN H S, et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice[J]. Metal Mine, 2019(8): 63−70.

    [27]

    LI H Q, MU S X, WENG X Q, et al. Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 506: 431−437. doi: 10.1016/j.colsurfa.2016.06.046

    [28]

    FENG Q C, ZHAO W J, WEN S M, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector[J]. Separation and Purification Technology, 2017, 178: 193−199. doi: 10.1016/j.seppur.2017.01.053

    [29]

    欧乐明, 黄思捷, 朱阳戈. 硫化矿浮选体系中金属离子对石英浮选行为的影响[J]. 中南大学学报(自然科学版), 2012, 43(2): 407−411.

    OU L M, HUANG S J, ZHU Y G. Influence of metal ions on floatability of quartz in flotation of sulfide ores[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 407−411.

    [30]

    欧乐明, 曾维伟, 冯其明, 等. Zn2+、Cu2+对菱锌矿和石英浮选的影响及作用机理[J]. 有色金属(选矿部分), 2011(5): 53−57.

    OU L M, ZENG W W, FENG Q M, et al. Influence and mechanism of zine and copper ion on flotation of smithsonite and quarte[J]. Nonferrous Metals(Minerals Processing Section), 2011(5): 53−57.

    [31]

    TRAHAR W J, SENIOR G D, HEYES G W, et al. The activation of sphalerite by lead — a flotation perspective[J]. International Journal of Mineral Processing, 1997, 49: 121−148. doi: 10.1016/S0301-7516(96)00041-5

    [32]

    黄裕卿, 邓荣东, 印万忠, 等. 黄药体系下铅离子诱导异极矿强化硫化浮选及其机理[J]. 中国有色金属学报, 2020, 30(9): 2224−2233. doi: 10.11817/j.ysxb.1004.0609.2020-35857

    HUANG Y Q, DENG R D, YING W Z, et al. Lead ions induced strengthening sulfidation-flotation of hemimorphite in xanthate system and its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 2224−2233. doi: 10.11817/j.ysxb.1004.0609.2020-35857

    [33]

    张国范, 张凤云. 浮选过程中金属离子对异极矿硫化的影响[J]. 中南大学学报(自然科学版), 2017, 48(7): 1689−1696.

    ZHANG G F, ZHANG F Y. Effect of metal ions on sulfiding flotation of hemimorphite[J]. Journal of Central South University of Science and Technology, 2017, 48(7): 1689−1696.

    [34]

    邹坚坚. 富银铅锌矿浮选分离试验研究[D]. 长沙: 中南大学, 2013

    ZOU J J. Research on the flotation separation of rich sliver lead-zine ore[D]. Changsha: Central South University, 2013.

    [35]

    RALSTON J, HEALY T W. Activation of zinc sulphide with CuⅡ, CdⅡ and PbⅡ: I activation in weakly acidic media[J]. International Journal of Mineral Processing, 1980, 7(3): 175−201. doi: 10.1016/0301-7516(80)90016-2

    [36]

    POPOV S R, VUINI D R, STROJEK J W, et al. Effect of dissolved lead ions on the ethylxanthate adsorption on sphalerite in weakly acidic media[J]. International Journal of Mineral Processing, 1989, 27(1/2): 51−62. doi: 10.1016/0301-7516(89)90005-7

    [37]

    HOUOT R, RAVENEAU P. Activation of sphalerite flotation in the presence of lead ions[J]. International Journal of Mineral Processing, 1992, 35(3/4): 253−271. doi: 10.1016/0301-7516(92)90037-W

    [38]

    LIU J, EJTEMAEI M, NGUYEN A V, et al. Surface chemistry of pb-activated sphalerite[J]. Minerals Engineering, 2020, 145: 106058−106058. doi: 10.1016/j.mineng.2019.106058

    [39]

    唐箫琴, 刘小妹, 陈晔. 闪锌矿表面铅活化及黄药吸附的密度泛函理论研究[J]. 有色金属工程, 2021(11): 90−95.

    TANG X Q, LIU X M, CHEN Y. CHEN Y. Density function theory(DFT) study on lead activation and adsorption on sphalerite surface[J]. Nonferrous Metals Engineering, 2021(11): 90−95.

    [40]

    FUERSTENAU M C, HAN K N. Metal-surfactant precipitation and adsorption in froth flotation[J]. Journal of Colloid and Interface Science, 2002, 256: 175−182. doi: 10.1006/jcis.2001.8089

    [41]

    王淀佐, 胡岳华. 氢氧化物表面沉淀在石英浮选中的作用[J]. 中南矿冶学院学报, 1990(3): 248−253.

    WANG D Z, HU Y H. The investigation of role of surface precipitation of meta hydroxide in flotation of quartz[J]. Journal of Central South University, 1990(3): 248−253.

    [42]

    HAN H S, LIU W I, HU Y H, et al. A novel flotation scheme: selective flotation of tungsten minerals from calcium minerals using Pb–BHA complexes in shizhuyuan[J]. Rare Metals, 2017, 36(6): 533−540. doi: 10.1007/s12598-017-0907-8

    [43]

    宫贵臣, 刘杰, 韩跃新, 等. 铜离子对锡石浮选的影响及其机理研究[J]. 金属矿山, 2019(2): 102−105.

    GONG G C, LIU J, HAN Y X, et al. Study on the effect and mechanism of Cu2+ on cassiterite flotation[J]. Metal Mine, 2019(2): 102−105.

    [44]

    汪泰, 刘殿文, 王成行, 等. 水杨羟肟酸体系下铜离子活化浮选锡石作用机制[J]. 中国有色金属学报, 2022

    WANG T, LIU D W, WANG C H, et al. Mechanism of activated flotation of cassiterite by copper ion in salicylhydroxamic acid system[J]. Chinese Journal of Nonferrous Metals, 2022.

    [45]

    王宇斌, 文堪, 张鲁. 利用铜离子改善油酸钠体系下白云母的可浮性[J]. 矿产保护与利用, 2017(6): 45-51

    WANG Y B, WEN K, ZHANG L. The floatability of muscovite in sodium oleate system was improved by copper ion[J] Conservation and Utilization of Mineral Resources, 2017(6): 45-51.

    [46]

    张波, 李解, 张雪峰, 等. Cu2+, Fe3+对萤石浮选的活化作用机制[J]. 稀有金属, 2016, 40(9): 963−968.

    ZHANG B, LI J, ZHANG X F, et al. Activation and mechanism of Cu2+ and Fe3+ in flotation system of fluorite ore[J]. Chinese Journal of Rare Metal, 2016, 40(9): 963−968.

    [47]

    DENG J S, WENG S M, LIU J, et al. Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3955−3963. doi: 10.1016/S1003-6326(14)63556-1

    [48]

    邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013

    DENG J S. The release of chalcopyrite fluid inclusion components and their interaction with the relaxed surface[D]. Kunming: Kunming University of Science and Technology, 2013.

    [49]

    张芹, 胡岳华, 顾帼华, 等. 铁闪锌矿的浮选行为及其表面吸附机理[J]. 中国有色金属学报, 2004(4): 676−680.

    ZHANG Q, HU Y H, GU G H, et al. Mechanism of Cu2+ ion activation flotation of marmatite in absence and presence of ethyl xanthate[J]. Chinese Journal of Nonferrous Metals, 2004(4): 676−680.

    [50]

    FINKELSTEIN N P. The activation of sulphide minerals for flotation: a review[J]. International Journal of Mineral Processing, 1997, 52(2): 81−120.

    [51]

    BUCKLEY A N, SKINNER S L, HARMER S L, et al. Examination of the proposition that Cu(Ⅱ) can be required for charge neutrality in a sulfide lattice — Cu in tetrahedrites and sphalerite[J]. Canadian journal of Chemistry, 2007, 85(10): 767−781. doi: 10.1139/v07-078

    [52]

    余润兰, 邱冠周, 胡岳华, 等. Cu2+活化铁闪锌矿的电化学[J]. 金属矿山, 2004(2): 35−37+40. doi: 10.3321/j.issn:1001-1250.2004.02.011

    YU R L, QIU G Z, HU Y H, et al. Electrochemical activation of sphalerite by Cu2+[J]. Metal Mines, 2004(2): 35−37+40. doi: 10.3321/j.issn:1001-1250.2004.02.011

    [53]

    ZHOU C, YOON R H. Electrochemistry of copper activation of sphalerite at pH 9.2[J]. International Journal of Mineral Processing, 2000, 58(1): 57−66.

    [54]

    KARTIO I J, YOON R H, BASILIO C I. An XPS study of sphalerite activation by copper[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 1998, 14(18): 5274−5278. doi: 10.1021/la970440c

    [55]

    PRESTIDGE C A, THIEL A G, RALSTON J, et al. The interaction of ethyl xanthate with copper(Ⅱ)-activated zinc sulphide: kinetic effects[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1994, 85(1): 51−68.

    [56]

    GERSON A R, LANGE A G, PRINCE K E, et al. The mechanism of copper activation of sphalerite[J]. Appl Surf Sci, 1999, 137(1): 207−223.

    [57]

    李佳磊, 宋凯伟, 刘殿文, 等. 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018, 18(1): 11−19.

    LI J L, SONG G W, LIU D W, et al. Research progress on activation and deactivation of sphalerite flotation[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 11−19.

    [58]

    张德文. 金属离子对铜蓝和黄铁矿浮选行为的影响[J]. 有色金属, 2018(3): 92−96.

    ZHANG D W. The effect of metal ions on the flotation behavior of copper blue and pyrite[J]. Nonferrous Metals, 2018(3): 92−96.

    [59]

    EJTEMAEI M, NGUYEN A V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals Engineering, 2017, 100: 223−232. doi: 10.1016/j.mineng.2016.11.005

    [60]

    WEISENER C, GERSON A. Cu(Ⅱ) adsorption mechanism on pyrite: an XAFS and XPS study[J]. Surface and Interface Analysis, 2000, 30(1): 454−458. doi: 10.1002/1096-9918(200008)30:1<454::AID-SIA807>3.0.CO;2-1

    [61]

    DAI P L, WEI Z C, CHEN L Z, et al. Adsorption of butyl xanthate on arsenopyrite (001) and Cu2+-activated arsenopyrite (001) surfaces: A DFT study[J]. Chemical Physics, 2022, 562.

    [62]

    ALBRECHT T, W. J, ALBRECHT, ADDAI-MENSAH J, et al. Critical copper concentration in sphalerite flotation: effect of temperature and collector[J]. International Journal of Mineral Processing, 2016, 146: 15-22.

    [63]

    CHANDRA A P, PUSKAR L, SIMPSON D J, et al. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation[J]. International Journal of Mineral Processing, 2012, 114/115/116/117: 16−26. doi: 10.1016/j.minpro.2012.08.003

    [64]

    陈琳璋, 侯清麟, 银锐明, 等. 钙离子影响十二烷基磺酸钠捕收石英的机理研究[J]. 湖南工业大学学报, 2012, 26(6): 8-12.

    CHEN L Z, HOU Q L , YIN R M, et al. The mechanism of calcium ions effects on quartz collection in the system of dodecyl sulphonate[J]. Journal of Hunan University of Technology, 2012, 26(6): 8-12.

    [65]

    张晋霞, 冯雅丽, 牛福生. 矿浆中金属离子对蓝晶石矿物浮选行为的影响[J]. 东北大学学报(自然科学版), 2014, 35(12): 1787−1791. doi: 10.12068/j.issn.1005-3026.2014.12.026

    ZHANG J X, FENG Y L, NIU F S. Influence of metal ions in pulp on floatability of kyanite minerals[J]. Journal of Northeastern University. Natural Science, 2014, 35(12): 1787−1791. doi: 10.12068/j.issn.1005-3026.2014.12.026

    [66]

    HUANG W X, LIU W B, ZHONG W L, et al. Effects of common ions on the flotation of fluorapatite and dolomite with oleate collector[J]. Minerals Engineering, 2021, 174: 107213.

    [67]

    DáVILA-PULIDO I G, URIBE-SALAS A, áLVAREZ-SILVA METAL. The role of calcium in xanthate adsorption onto sphalerite[J]. Minerals Engineering, 2015, 71: 113−119. doi: 10.1016/j.mineng.2014.09.004

    [68]

    郭玉, 寇珏, 孙体昌, 等. 十二烷基磺酸钠和月桂酸在石英表面的吸附机理研究[J]. 矿冶工程, 2015, 35(2): 50-54.

    GUO Y, KOU J, SUN T C, et al. Adsorption mechanism of sodium dodecyl sulfate and lauric acid on quartz by QCM-D[J]. Mining and Metallurgical Engineering, 2015, 71: 113-119.

    [69]

    石云良, 邱冠周, 胡岳华, 等. 石英浮选中的表面化学反应[J]. 矿冶工程, 2001(3): 43−45+48.

    SHI Y L, QIU G Z, HU Y H, et al. Surface chemical reactions in oleate flotation quartz[J]. Mining and Metallurgical Engineering, 2001(3): 43−45+48.

    [70]

    从金瑶, 王维清, 林一明, 等. 油酸钠体系下钙离子活化石英浮选机理研究[J]. 非金属矿, 2018, 41(6): 77−79.

    CONG J Y, WANG W Q, LIN Y M, et al. Flotation mechanism of calcium ion activation quartz in system of sodium oleate[J]. Non-metallic Mines, 2018, 41(6): 77−79.

    [71]

    刘荣祥, 李解, 苏文柔, 等. 红外光谱、XPS分析比较Ca2+, Fe3+对石英的活化机理[J]. 光谱学与光谱分析, 2020, 40(6): 1876−1882.

    LIU R X, LI J, SU W R, et al. FTIR and XPS analysis comparing the activation mechanism of Ca2+ and Fe3+ on quartz[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1876−1882.

    [72]

    卯松, 何晓太, 张覃. 钙离子对胶磷矿和白云石可浮性的影响研究[J]. 矿冶工程, 2013, 33(4): 56−58.

    MAO S, HE X T, ZHANG Q. Study of influence of calcium ion on floatability of colloiphanite and dolomite under the presence of inorganic anions[J]. Mining and Metallurgical Engineering, 2013, 33(4): 56−58.

    [73]

    王宇斌, 文堪, 张鲁, 等. Ca2+与白云母作用机理的XPS分析[J]. 矿物学报, 2018, 38(4): 462−468.

    WANG Y B, WEN K, ZHAN L, et al. XPS analysis of interaction mechanism between Ca2+ and Muscovite[J]. Journal of Mineralogy, 2018, 38(4): 462−468.

    [74]

    曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109−117.

    ZENG Y, LIU J, WANG Y, et al. Research progress on the influence of typical metal ions on the flotation behavior of sphalerite and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109−117.

    [75]

    唐劭禹, 张凌燕, 张冲, 等. Fe3+对十二烷基磺酸钠捕收石英的活化作用研究[J]. 非金属矿, 2017, 40(5): 79−81.

    TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non-Metallic Mines, 2017, 40(5): 79−81.

    [76]

    欧乐明, 叶家笋, 曾维伟, 等. 铁离子和亚铁离子对菱锌矿和石英浮选的影响[J]. 有色金属(选矿部分), 2012(6): 79−82.

    OU L M, YE J S, ZENG W W, et al. The influence of iron and ferrous ions on the flotation of siderite and quartz[J]. Nonferrous Metals (Mineral Processing Section), 2012(6): 79−82.

    [77]

    班小淇, 顾畔, 印万忠, 等. 菱镁矿浮选体系中Fe3+对白云石的选择性活化及机理分析[J]. 矿产综合利用, 2022(5): 125-129.

    BAN X Q, GU P, YIN W Z, et al. Selective activation of dolomite by Fe3+ in magnesite flotation system and its mechanism analysis[J]. Comprehensive Utilization of Mineral Resources, 2022(5): 125−129.

    [78]

    王宇斌, 雷大士, 张小波, 等. 油酸钠体系下Fe3+与白云母的作用机理研究[J]. 硅酸盐通报, 2018, 37(4): 1435−1440.

    WANG Y B, LEI D S, ZHANG X B, et al. Interaction mechanism of Fe3+ with Muscovite in sodium oleate system[J]. Silicate Bulletin, 2018, 37(4): 1435−1440.

    [79]

    ZHENG Q, QIAN Y, ZOU D, et al. Surface mechanism of Fe3+ions on the improvement of fine monazite flotation with octyl hydroxamate as the collector[J]. Frontiers in Chemistry, 2021, 9: 700347. doi: 10.3389/fchem.2021.700347

    [80]

    ZENG W W, ZHANG Q F, SHI Q, et al. Effects and mechanism of Fe3+ on flotation separation of feldspar and epidote with sodium oleate at natural pH[J]. Separations, 2022, 9: 110.

    [81]

    ZHANG J, WANG W Q, LIU J, et al. Fe(Ⅲ) as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Minerals Engineering, 2014, 61: 16−22. doi: 10.1016/j.mineng.2014.03.004

    [82]

    XIE R Q, ZHU YM, LIU J, et al. Effects of metal ions on the flotation separation of spodumene from feldspar and quartz[J]. Minerals Engineering, 2021, 168: 106931.

    [83]

    于洋, 宋磊, 周少珍, 等. 多价金属阳离子对几种含钙盐类矿物可浮性的影响[J]. 化工矿物与加工, 2015, 44(9): 9−13.

    YU Y, SONG L, ZHOU S Z, et al. Influence of multivalent metal cations on floatability of several calcium salt minerals[J]. Industrial Minerals and Processing, 2015, 44(9): 9−13.

    [84]

    曾维伟, 刘旭. 铝离子对长石和绿帘石浮选的影响及其作用机理[J]. 矿冶工程, 2021, 41(6): 56−60+64.

    ZENG W W, LIU X. Effect and mechanism of Al3+ on flotation of feldspar and epidote[J]. Mining and Metallurgical Engineering, 2021, 41(6): 56−60+64.

    [85]

    陈俐全, 张凌燕, 陈志强, 等. 铝离子对油酸钠浮选石英的影响及作用机理简[J]. 金属矿山, 2018(1): 120−124.

    CHEN L Q, ZHANG L Y, CHEN Z Q, et al. Effect and mechanism of aluminum ion on quartz flotation in the system of sodium oleate[J]. Metal Mine, 2018(1): 120−124.

    [86]

    陈荩, 陈万雄, 孙中溪. 金属离子活化石英的判据及规律[J]. 金属矿山, 1982(6): 30−33+56.

    CHEN J, CHEN W X, SUN Z X. Criterion and law of metal ions activated quartz[J]. Metal Mine, 1982(6): 30−33+56.

    [87]

    沙惠雨, 刘长淼, 方霖, 等. 常见金属阳离子对黑云母浮选行为影响研究[J]. 金属矿山, 2017(1): 94−98.

    SHA H Y, IIU C M, FANG L, et al. Effect of metallic cations on floatability performance of pure biotite[J]. Metal Mine, 2017(1): 94−98.

    [88]

    印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17-22

    YIN W Z, SUN C Y, Review on research status on flotation principles of silicate mineral[J]. Conservation and Utilization of Mineral Resources, 2001(3): 17-22.

    [89]

    林慧博, 印万忠, 孙传尧. 硅酸盐矿物表面金属离子吸附规律的XPS分析[J]. 有色矿冶, 2003(3): 21−24.

    LIN H B, YIN W Z, SUN C Y. XPS analysis on adsorption law of metal ion on surface of silicate minerals[J]. Non-ferrous Mining and Metallurgy, 2003(3): 21−24.

    [90]

    于福顺, 孙永峰, 蒋曼, 等. 金属阳离子在锂辉石浮选中的活化行为及作用机理[J]. 中国有色金属学报, 2021, 31(1): 203−210.

    YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. Chinese Journal of Nonferrous Metals, 2021, 31(1): 203−210.

    [91]

    廉会良, 范迎菊, 李娜, 等. Cu2+和Pb2+对硫化锌矿物表面的活化作用[J]. 济南大学学报(自然科学版), 2013, 27(1): 63−66.

    LAN H L, FAN Y J, LI N, et al. Activation of Cu2+ and Pb2+ on the surface of zinc sulfide minerals[J]. Journal of Ji’nan University (Natural Science Edition), 2013, 27(1): 63−66.

    [92]

    朱一民, 周菁. 金属阳离子活化雌黄的浮选及机理[J]. 有色矿山, 2001(1): 28−31+36.

    ZHU Y M, ZHO Q. Flotation and mechanism of metal cation activated female yellow[J]. Non-ferrous Mines, 2001(1): 28−31+36.

    [93]

    高玚. 硅钙条件下新型捕收剂浮选微细粒锡石试验研究及应用[D]. 南宁: 广西大学, 2022

    GAO Y. Experimental study and application of new collector in flotation of fine cassiterite under silica-calcium condition[D]. Nanning: Guangxi University, 2022.

    [94]

    张周位. 锡石浮选体系中金属离子作用机理及其应用[D]. 长沙: 中南大学, 2013

    ZHANG Z W. Study on the mechanism and application of metal ions in cassiterite flotation system[D]. Changsha: Centra South University, 2013.

    [95]

    宫贵臣, 刘杰, 韩跃新. 金属离子对微细粒锡石浮选行为的影响[J]. 矿产综合利用, 2016(4): 43−47. doi: 10.3969/j.issn.1000-6532.2016.04.010

    GONG G C, LIU J, HAN Y X. Effect of metal ions on flotation behaviors of fine cassiterite[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 43−47. doi: 10.3969/j.issn.1000-6532.2016.04.010

    [96]

    陈禹蒙. 锡石与方解石、斜绿泥石的浮选分离基础研究[D]. 昆明: 昆明理工大学, 2019

    CHEN Y M. Basic research on flotation separation of cassiterite, calcite clinochlore[D]. Kunming: Kunming university of Science and Technology, 2019.

  • 加载中

(7)

计量
  • 文章访问数:  995
  • PDF下载数:  87
  • 施引文献:  0
出版历程
收稿日期:  2023-04-21
刊出日期:  2023-08-25

目录