Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth
-
摘要:
战略性关键金属锂和稀土是重要的工业原料,对社会发展和国家安全具有不可替代的作用,随着经济发展,锂和稀土的市场供需矛盾日益突出。煤系锂和稀土储量丰富,因此其提取回收受到了世界各国的广泛关注。通过综合分析当前国内外煤系锂和稀土的研究成果,总结了锂和稀土的赋存特征,系统阐述了分选富集和化学浸出方面的最新研究进展。针对现有分选方式富集倍数低、化学助剂消耗量大、废渣废水产量多等问题,建议开发物理−化学联用方式定向富集煤及其副产物中的锂和稀土元素,提升其品位,降低后续化学浸出难度。同时推进煤及其副产物中多种伴生资源协同提取、绿色开发研究,实现煤系资源高附加值综合利用。
Abstract:Lithium and rare earths as critical metals, are important industrial raw materials and play an irreplaceable role in promoting social and national security. With the development of economy, the contradiction of demand and support on lithium and rare earths has been intensifying. Coal−based lithium and rare earths reserves are abundant, of which the extraction and recovery has attracted widespread attention from countries around the world. Through a comprehensive analysis of the current research on coal−based lithium and rare earths at home and abroad, the progress on occurrence characteristics, beneficiation enrichment and chemical leaching of lithium and rare earths are systematically summarized, concluded and prospected. The challenges of their utilization contain unsatisfactory enrichment factors, high additives consumption, and high waste production of current technology. Thus, it is recommended to developed a physical−chemical combined method to directionally improve their grade, reducing the difficulty of subsequent chemical leaching. Furthermore, the research on the collaborative, green extraction other components in coal−based resources is promoted to achieve comprehensive utilization with high added value.
-
Key words:
- lithium /
- rare earth /
- coal gangue /
- coal fly ash /
- occurrence characteristics /
- physical separation /
- chemical leaching
-
-
图 1 粉煤灰“分级—磁选”富集稀土元素流程[68]
Figure 1.
图 2 粉煤灰“一步酸溶法”工艺流程[88]
Figure 2.
图 3 煤矸石热活化—硝酸浸出—分离铁/镓—低温热解—水洗提纯工艺流程[89]
Figure 3.
表 1 不同粒度组分粉煤灰样中稀土元素的含量[57]
Table 1. Contents of rare earth elements in coal fly ash samples of different particle size fractions[57]
组分 SFa1 SF2 SF3 SF4 SF5 原样 质量产率/% 7.30 13.50 20.30 35.30 23.60 100.00 MMDb/μm 2.20 5.40 9.70 19.40 43.20 17.60 La/(μg·g−1) 37.00 18.00 28.00 42.00 24.00 31.00 Ce/(μg·g−1) 85.00 47.00 70.00 94.00 61.00 78.00 Pr/(μg·g−1) 13.00 6.40 9.50 12.00 7.70 10.00 Nd/(μg·g−1) 45.00 26.00 36.00 51.00 32.00 43.00 Sm/(μg·g−1) 15.00 9.10 13.00 16.00 10.00 13.00 Eu/(μg·g−1) 3.80 2.30 3.20 3.20 2.10 3.10 Gd/(μg·g−1) 17.00 10.00 14.00 14.00 9.40 14.00 Tb/(μg·g−1) 3.00 1.80 2.50 2.30 1.50 2.20 Dy/(μg·g−1) 18.00 11.00 14.00 15.00 9.80 15.00 Ho/(μg·g−1) 3.90 2.30 2.90 2.80 1.90 2.90 Er/(μg·g−1) 12.00 6.70 8.50 8.00 5.30 8.30 Tm/(μg·g−1) 1.70 1.00 1.20 1.10 0.74 1.10 Yb/(μg·g−1) 13.00 7.10 8.60 7.80 4.80 7.90 Lu/(μg·g−1) 2.10 1.20 1.40 1.30 0.71 1.30 REE/(μg·g−1) 270.00 150.00 213.00 271.00 171.00 231.00 LREE/(μg·g−1) 195.00 107.00 157.00 215.00 135.00 175.00 HREE/(μg·g−1) 75.00 43.00 56.00 56.00 36.00 56.00 HREE/LREE/(μg·g−1) 0.38 0.41 0.36 0.26 0.27 0.32 a:SF(size fractions)表示粒度组分,在第一个分级步骤中,从粉煤灰中分离出SF1(最细粒级),剩余粗粒粉煤灰作为第二步的入料,降低分级机转速,分离出SF2,再依次进行分级获得SF3、SF4和SF5;
b:MMD(mass median diameters)表示质量中位直径。表 2 4种分选方法富集煤及其副产物中锂和稀土元素的特点
Table 2. Characteristics of enriching lithium and rare earth elements in coal and its by−products by four separation methods
方法 优势 不足 粒度分级 流程简单,适用范围广 富集倍数低 重选 适用范围广 流程较复杂,条件难控制 磁选 流程简单,效率高 仅适用于粉煤灰和
部分原煤浮选 效率高,富集倍数较高 流程较复杂,要求
原料粒度细表 3 化学浸出法提取煤及其副产物中锂和稀土元素的特点
Table 3. Characteristics of extracting lithium and rare earth elements from coal and its by−products by chemical leaching
方法 优势 不足 直接浸出 流程简单 回收率低 空白焙烧—浸出 回收率高,流程经典可靠 仅适用于原煤和煤矸石,能耗高 助剂焙烧—浸出 回收率高,适用范围广 流程复杂,化学助剂消耗量大,废水废渣产量大 -
[1] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.
ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.
[2] 侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417
HOU Z Q, CHEN J, ZHAI M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417
[3] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.
WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 848−866.
[4] DOU S Q, XU D Y, ZHU Y G, et al. Critical mineral sustainable supply: Challenges and governance[J]. Futures, 2023, 146: 103101. doi: 10.1016/j.futures.2023.103101
[5] 李建武, 李天骄, 贾宏翔, 等. 中国战略性关键矿产目录厘定[J]. 地球学报, 2023, 44(2): 261−270.
LI J W, LI T J, JIA H X, et al. Determination of China's strategic and critical minerals List[J]. Acta Geoscientica Sinica, 2023, 44(2): 261−270.
[6] 王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550−1559.
WANG A J, YUAN X J. Security of China's strategic and critical minerals under background of great power competition[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1550−1559.
[7] SEREDIN V V, DAI S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67−93. doi: 10.1016/j.coal.2011.11.001
[8] 宁树正, 黄少青, 朱士飞, 等. 中国煤中金属元素成矿区带[J]. 科学通报, 2019, 64(24): 2501−2513. doi: 10.1360/N972019-00377
NING S Z, HUANG S Q, ZHU S F, et al. Mineralization zoning of coal−metal deposits in China[J]. Chinese Science Bulletin, 2019, 64(24): 2501−2513. doi: 10.1360/N972019-00377
[9] 代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal−bearing sequences in China: enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
[10] DAI S F, FINKELMAN R B. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005
[11] SUN B L, LIU Y X, TAJCMANOVA L, et al. In−situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu Coalfield, northern China[J]. Ore Geology Reviews, 2022, 144: 104825. doi: 10.1016/j.oregeorev.2022.104825
[12] JI B, LI Q, ZHANG W C. Rare earth elements (REEs) recovery from coal waste of the Western Kentucky No. 13 and Fire Clay Seams. Part I: Mineralogical characterization using SEM−EDS and TEM−EDS[J]. Fuel, 2022, 307: 121854. doi: 10.1016/j.fuel.2021.121854
[13] KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135−148. doi: 10.1016/j.coal.2009.01.002
[14] DAI S F, REN D Y, CHOU C L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3−21. doi: 10.1016/j.coal.2011.02.003
[15] 宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报, 2017, 42(9): 2214−2225.
NING S Z, DENG X L, LI C C, et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society, 2017, 42(9): 2214−2225.
[16] QIN S J, ZHAO C L, LI Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil Gas and Coal Technology, 2015, 9(2): 215−229. doi: 10.1504/IJOGCT.2015.067490
[17] DAI S F, LI D, CHOU C L, et al. Mineralogy and geochemistry of boehmite−rich coals: new insights from the haerwusu surface mine, jungar coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2008, 74(3/4): 185−202. doi: 10.1016/j.coal.2008.01.001
[18] DAI S F, JIANG Y F, WARD C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology, 2012, 98: 10−40. doi: 10.1016/j.coal.2012.03.003
[19] 衣姝, 王金喜. 安家岭矿9号煤中锂的赋存状态和富集因素分析[J]. 煤炭与化工, 2014, 37(9): 7−10.
YI S, WANG J X. Lithium occurrences and enrichment factor law in No. 9 coal seam of Anjialing mine[J]. Coal and Chemical Industry, 2014, 37(9): 7−10.
[20] ZHOU M X, ZHAO L, WANG X B, et al. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium[J]. Ore Geology Reviews, 2021, 139: 104582. doi: 10.1016/j.oregeorev.2021.104582
[21] DAI S F, REN D Y, TANG Y G, et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China[J]. International Journal of Coal Geology, 2005, 61(1/2): 119−137. doi: 10.1016/j.coal.2004.07.003
[22] 宋杨. 贵州普安某高硫煤脱硫降灰试验研究[D]. 贵阳: 贵州大学, 2020.
SONG Y. Study on desulfurization and ash reduction of a high sulfur coal in Pu'an of Guizhou Provine[D]. Guiyang: Guizhou University, 2020.
[23] DU F P, NING S Z, QIAO J W, et al. Geochemical and mineralogical characteristics of the Li−Sr−enriched coal in the Wenjiaba mine, Guizhou, SW China[J]. ACS Omega, 2021, 6(13): 8816−8828. doi: 10.1021/acsomega.0c05663
[24] 刘云霞. 山西省典型矿区煤及煤灰中锂镓赋存状态与转化机制[D]. 太原: 太原理工大学, 2022.
LIU Y X. Occurrence and transformation of lithium and gallium in coal and coal ash from typical mining areas of Shanxi Provine[D]. Taiyuan: Taiyuan University of Technology, 2022.
[25] 赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750−1760.
ZHAO L, WANG X B, DAI S F. Lithium resources in coal−bearing strata: Occurrence, mineralization, and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750−1760.
[26] 程晨, 宋杨, 臧静坤, 等. 贵州普安矿区20号煤中锂的赋存状态及逐级化学提取实验研究[J]. 煤田地质与勘探, 2022, 50(10): 44−53.
CHENG C, SONG Y, ZANG J K, et al. Occurrence modes and stepwise chemical extraction experiment of lithium in No. 20 coal seam in Pu'an mining area, Guizhou Province[J]. Coal Geology & Exploration, 2022, 50(10): 44−53.
[27] 朱士飞, 曹泊, 吴国强, 等. 广西上林万福矿区煤中锂、镓和稀土元素逐级提取实验研究[J]. 中国煤炭地质, 2021, 33(9): 38−41.
ZHU S F, CAO B, WU G Q, et al. Experimental study of coal lithium, gallium and REE stepwise extraction in Wanfu mine area, Shanglin, Guangxi[J]. Coal Geology of China, 2021, 33(9): 38−41.
[28] ZHANG W C, HONAKER R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample[J]. Fuel, 2020, 267: 117236. doi: 10.1016/j.fuel.2020.117236
[29] ZHANG W C, NOBLE A, YANG X B, et al. Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal[J]. Fuel, 2020, 268: 117319. doi: 10.1016/j.fuel.2020.117319
[30] HU P P, HOU X J, ZHANG J B, et al. Distribution and occurrence of lithium in high−alumina−coal fly ash[J]. International Journal of Coal Geology, 2018, 189: 27−34. doi: 10.1016/j.coal.2018.02.011
[31] 徐飞. 燃煤过程中关键元素的赋存特征及迁移转化规律[D]. 邯郸: 河北工程大学, 2021.
XU F. Occurrence characteristics, migration and transformation of critical elements during coal combustion[D]. Handan: Hebei University of Engineering, 2021.
[32] 曹泊, 朱士飞, 秦云虎, 等. 煤中稀土元素研究现状及展望[J]. 煤炭科学技术, 2022, 50(4): 181−194.
CAO B, ZHU S F, QIN Y H, et al. Research status and prospect of rare earth elements in coal[J]. Coal Science and Technology, 2022, 50(4): 181−194.
[33] 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.
QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal−related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.
[34] 刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11): 2368−2375.
LIU D R, GAO G M, CHI J Z, et al. Distribution rule of rare earth and trace elements in the Heidaigou openpit coal mine in the Junggar coal field[J]. Acta Geologica Sinica, 2018, 92(11): 2368−2375.
[35] 刘蔚阳, 樊景森, 王金喜, 等. 宁武煤田煤中稀土元素地球化学特征研究[J]. 煤炭科学技术, 2020, 48(4): 237−245.
LIU Y Y, FAN J S, WANG J X, et al. Study on geochemical characteristics of rare earth elements from coal in Ningwu Coalfield[J]. Coal Science and Technology, 2020, 48(4): 237−245.
[36] DAI S F, ZHOU Y P, REN D Y, et al. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China[J]. Science in China Series D:Earth Sciences, 2007, 50(5): 678−688. doi: 10.1007/s11430-007-0001-4
[37] DAI S F, XIE P P, JIA S H, et al. Enrichment of U−Re−V−Cr−Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews, 2017, 80: 1−17. doi: 10.1016/j.oregeorev.2016.06.015
[38] ZHANG W C, NOBLE A. Mineralogy characterization and recovery of rare earth elements from the roof and floor materials of the Guxu coalfield[J]. Fuel, 2020, 270: 117533. doi: 10.1016/j.fuel.2020.117533
[39] YANG B, CHENG C, LI Y X, et al. Modes of occurrence and pre−concentration of rare earth elements in No. 17 coal in Liupanshui coalfield, China[J]. Journal of Rare Earths, 2022, 40(8): 1323−1332. doi: 10.1016/j.jre.2021.09.001
[40] YU C L, MU N N, HUANG W H, et al. Major and rare earth element characteristics of Late Paleozoic coal in the southeastern Qinshui basin: Implications for depositional environments and provenance[J]. ACS Omega, 2022, 7(35): 30856−30878. doi: 10.1021/acsomega.2c02596
[41] HOWER J C, GROPPO J G, HENKE K R, et al. Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash[J]. Minerals, 2015, 5(2): 356−366. doi: 10.3390/min5020356
[42] DAI S F, ZHAO L, HOWER J C, et al. Petrology, mineralogy, and chemistry of size−fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements[J]. Energy & Fuels, 2014, 28(2): 1502−1514.
[43] SMOLKA−DANIELOWSKA D. Rare earth elements in fly ashes created during the coal burning process in certain coal−fired power plants operating in Poland – Upper Silesian Industrial Region[J]. Journal of Environmental Radioactivity, 2010, 101(11): 965−968. doi: 10.1016/j.jenvrad.2010.07.001
[44] KOLKER A, SCOTT C, HOWER J C, et al. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP−RG ion microprobe[J]. International Journal of Coal Geology, 2017, 184: 1−10. doi: 10.1016/j.coal.2017.10.002
[45] 潘金禾. 粉煤灰中稀土元素赋存机制及富集提取研究[D]. 徐州: 中国矿业大学, 2021.
PAN J H. Study on the enrichment, extraction, and mechanism of occurrence of rare earth elements in coal fly ash[D]. Xuzhou: China University of Mining and Technology, 2021.
[46] 李梦闪, 黄伟欣, 张臻悦, 等. 煤及其副产物中稀土元素的赋存特征与选矿富集研究进展[J]. 有色金属(选矿部分), 2021(6): 61−81.
LI M S, HUANG W X, ZHANG Z Y, et al. A review on occurrence characteristics and beneficiation enrichments of rare earth elements in coal and its by−products[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 61−81.
[47] 刘建婧. 平朔煤中矿物质及微量元素镓、锂分布规律研究[D]. 太原: 太原理工大学, 2019.
LIU J J. Distribution of minerals and trace elements gallium and lithium in Pingshuo coal[D]. Taiyuan: Taiyuan University of Technology, 2019.
[48] CHENG W, YANG R D, ZHANG Q, et al. Washability and distribution behaviors of trace elements of a high−sulfur coal, SW Guizhou, China[J]. Minerals, 2018, 8(2): 59. doi: 10.3390/min8020059
[49] 张森. 煤中微量有价元素赋存状态及迁移规律研究[D]. 太原: 山西大学, 2019.
ZHANG S. Study on the modes of occurrence and volatility of trace valuable elements in coals[D]. Taiyuan: Shanxi University, 2019.
[50] 宋杨, 杨欢欢, 程伟. 黔西南某中高硫煤脱硫过程中微量元素的分配特性研究[J]. 矿冶工程, 2020, 40(4): 45−48.
SONG Y, YANG H H, CHENG W. Distribution of trace elements amid desulfurization of medium−high sulfur coal in southwestern Guizhou[J]. Mining and Metallurgical Engineering, 2020, 40(4): 45−48.
[51] 张磊. 煤系锂、镓和稀土的洗选分布规律及焙烧浸出研究[D]. 徐州: 中国矿业大学, 2023.
ZHANG L. Study on washing distribution laws and roasting leaching of coal−based lithium, gallium and rare earth elements[D]. Xuzhou: China University of Mining and Technology, 2023.
[52] ZHANG L, CHEN H C, PAN J H, et al. The effect of physical separation and calcination on enrichment and recovery of critical elements from coal gangue[J]. Minerals, 2022, 12(11): 1371. doi: 10.3390/min12111371
[53] MA Z B, SHAN X Y, CHENG F Q. Distribution characteristics of valuable elements, Al, Li, and Ga, and rare earth elements in feed coal, fly ash, and bottom ash from a 300 MW circulating fluidized bed boiler[J]. ACS Omega, 2019, 4(4): 6854−6863. doi: 10.1021/acsomega.9b00280
[54] XU F, QIN S J, LI S Y, et al. Distribution, occurrence mode, and extraction potential of critical elements in coal ashes of the Chongqing Power Plant[J]. Journal of Cleaner Production, 2022, 342: 130910. doi: 10.1016/j.jclepro.2022.130910
[55] ZHOU C C, LI C, LI W W, et al. Distribution and preconcentration of critical elements from coal fly ash by integrated physical separations[J]. International Journal of Coal Geology, 2022, 261: 104095. doi: 10.1016/j.coal.2022.104095
[56] LI C, ZHOU C C, LI W W, et al. Enrichment of critical elements from coal fly ash by the combination of physical separations[J]. Fuel, 2023, 336: 127156. doi: 10.1016/j.fuel.2022.127156
[57] LANZERSTORFER C. Pre−processing of coal combustion fly ash by classification for enrichment of rare earth elements[J]. Energy Reports, 2018, 4: 660−663. doi: 10.1016/j.egyr.2018.10.010
[58] GONG Y B, SUN J M, ZHANG Y M, et al. Dependence on the distribution of valuable elements and chemical characterizations based on different particle sizes of high alumina fly ash[J]. Fuel, 2021, 291: 120225. doi: 10.1016/j.fuel.2021.120225
[59] PAN J H, ZHOU C C, TANG M C, et al. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure[J]. Fuel, 2019, 237: 555−565. doi: 10.1016/j.fuel.2018.09.139
[60] CHENG W, ZHANG Q, YANG R D, et al. Occurrence modes and cleaning potential of sulfur and some trace elements in a high−sulfur coal from Pu’an coalfield, SW Guizhou, China[J]. Environmental Earth Sciences, 2014, 72(1): 35−46. doi: 10.1007/s12665-013-2934-6
[61] CHEN H C, ZHANG L, PAN J H, et al. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108818. doi: 10.1016/j.jece.2022.108818
[62] LIN R H, HOWARD B H, ROTH E A, et al. Enrichment of rare earth elements from coal and coal by−products by physical separations[J]. Fuel, 2017, 200: 506−520. doi: 10.1016/j.fuel.2017.03.096
[63] HONAKER R, GROPPO J, BHAGAVATULA A, et al. Recovery of rare earth minerals and elements from coal and coal byproducts: Coal Prep 2016[C], 2016.
[64] ZHANG W, HONAKER R, GROPPO J. Concentration of rare earth minerals from coal by froth flotation[J]. Minerals & Metallurgical Processing, 2017, 34(3): 132−137.
[65] ZHANG W C, YANG X B, HONAKER R Q. Association characteristic study and preliminary recovery investigation of rare earth elements from Fire Clay seam coal middlings[J]. Fuel, 2018, 215: 551−560. doi: 10.1016/j.fuel.2017.11.075
[66] WEN Z P, CHEN H C, PAN J H, et al. Grinding activation effect on the flotation recovery of unburned carbon and leachability of rare earth elements in coal fly ash[J]. Powder Technology, 2022, 398: 117045. doi: 10.1016/j.powtec.2021.117045
[67] 潘金禾, 周长春, 温智平, 等. 四川某地粉煤灰中稀土元素的富集回收[J]. 中国矿业大学学报, 2022, 51(5): 998−1006.
PAN J H, ZHOU C C, WEN Z P, et al. Recovery of rare earth elements in coal fly ash from Sichuan Province[J]. Journal of China University of Mining & Technology, 2022, 51(5): 998−1006.
[68] PAN J H, NIE T C, HASSAS B V, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248: 126112. doi: 10.1016/j.chemosphere.2020.126112
[69] ROSITA W, BENDIYASA I M, PERDANA I, et al. Sequential particle−size and magnetic separation for enrichment of rare−earth elements and yttrium in Indonesia coal fly ash[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103575. doi: 10.1016/j.jece.2019.103575
[70] HOWER J C, GROPPO J G, JOSHI P, et al. Distribution of lanthanides, yttrium, and scandium in the pilot−scale beneficiation of fly ashes derived from eastern Kentucky coals[J]. Minerals, 2020, 10(2): 105. doi: 10.3390/min10020105
[71] ZHANG W C, HONAKER R. Calcination pretreatment effects on acid leaching characteristics of rare earth elements from middlings and coarse refuse material associated with a bituminous coal source[J]. Fuel, 2019, 249: 130−145. doi: 10.1016/j.fuel.2019.03.063
[72] ZHANG W C, REZAEE M, BHAGAVATULA A, et al. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by−products[J]. International Journal of Coal Preparation and Utilization, 2015, 35(6): 295−330. doi: 10.1080/19392699.2015.1033097
[73] 王梓硕, 臧静坤, 王小蕊, 等. 用氧化焙烧—盐酸浸出工艺从煤矸石中提取锂试验研究[J]. 湿法冶金, 2023, 42(6): 574−581.
WANG Z S, ZANG J K, WANG X R, et al. Extraction of lithium from coal gangue by oxidation roasting−hydrochloric acid leaching process[J]. Hydrometallurgy of China, 2023, 42(6): 574−581.
[74] 聂天成. 焙烧活化对煤矸石中稀土元素的赋存及浸出影响研究[D]. 徐州: 中国矿业大学, 2021.
NIE T C. Study on the effect of roasting activation on the occurrence and leaching of rare earth elements in coal refuse[D]. Xuzhou: China University of Mining and Technology, 2021.
[75] 赵泽森, 高建明, 郭彦霞, 等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究, 2018, 31(3): 569−576.
ZHAO Z S, GAO J M, GUO Y X, et al. Acid−alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences, 2018, 31(3): 569−576.
[76] TAGGART R K, HOWER J C, DWYER G S, et al. Trends in the rare earth element content of U. S.−Based coal combustion fly ashes[J]. Environmental Science & Technology, 2016, 50(11): 5919−5926.
[77] TALAN D, HUANG Q Q. A review study of rare earth, cobalt, lithium, and manganese in coal−based sources and process development for their recovery[J]. Minerals Engineering, 2022, 189: 107897. doi: 10.1016/j.mineng.2022.107897
[78] SHAO S, MA B Z, WANG C Y, et al. Extraction of valuable components from coal gangue through thermal activation and HNO3 leaching[J]. Journal of Industrial and Engineering Chemistry, 2022, 113: 564−574. doi: 10.1016/j.jiec.2022.06.033
[79] ZHANG L, CHEN H C, PAN J H, et al. Extraction of lithium from coal gangue by a roasting−leaching process[J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 863−878. doi: 10.1080/19392699.2022.2083611
[80] PAN J H, NIE T C, ZHOU C C, et al. The effect of calcination on the occurrence and leaching of rare earth elements in coal refuse[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108355. doi: 10.1016/j.jece.2022.108355
[81] HONAKER R Q, ZHANG W, WERNER J. Acid leaching of rare earth elements from coal and coal ash: Implications for using fluidized bed combustion to assist in the recovery of critical materials[J]. Energy & Fuels, 2019, 33(7): 5971−5980.
[82] PAN J H, LONG X, ZHANG L, et al. The discrepancy between coal ash from muffle, circulating fluidized bed (CFB), and pulverized coal (PC) furnaces, with a focus on the recovery of iron and rare earth elements[J]. Materials, 2022, 15(23): 8494. doi: 10.3390/ma15238494
[83] XU H Q, LIU C L, MI X, et al. Extraction of lithium from coal fly ash by low−temperature ammonium fluoride activation−assisted leaching[J]. Separation and Purification Technology, 2021, 279: 119757. doi: 10.1016/j.seppur.2021.119757
[84] 汤梦成. 碱熔−酸浸提取粉煤灰中稀土元素研究[D]. 徐州: 中国矿业大学, 2019.
TANG M C. Study on extraction of rare earth elements from coal fly ash by alkali fusion−acid leaching[D]. Xuzhou: China University of Mining and Technology, 2019.
[85] QIN Q Z, DENG J S, GENG H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765. doi: 10.1016/j.jclepro.2022.130765
[86] 成俊伟, 任卫国, 王建成, 等. 吸附法提取煤矸石中锂的工艺[J]. 化工进展, 2019, 38(8): 3589−3595.
CHENG J W, REN W G, WANG J C, et al. Extraction of lithium from coal gangue by manganese ion sieve adsorption[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3589−3595.
[87] NAWAB A, YANG X B, HONAKER R. An acid baking approach to enhance heavy rare earth recovery from bituminous coal−based sources[J]. Minerals Engineering, 2022, 184: 107610. doi: 10.1016/j.mineng.2022.107610
[88] 郭昭华. 粉煤灰“一步酸溶法”提取氧化铝工艺技术及工业化发展研究[J]. 煤炭工程, 2015, 47(7): 5−8. doi: 10.11799/ce201507002
GUO Z H. Study and industrialization development of one−step acid dissolution technology for alumina extraction from fly ash[J]. Coal Engineering, 2015, 47(7): 5−8. doi: 10.11799/ce201507002
[89] 邵爽. 煤矸石热活化与硝酸浸出铝镓锂的基础研究[D]. 北京: 北京科技大学, 2023.
SHAO S. Basic research on thermal activation and HNO3 leaching of coal gangue to extract Al/Ga/Li[D]. Beijing: University of Science and Technology Beijing, 2023.
-