煤系锂和稀土的赋存特征与富集提取研究进展

张磊, 陈航超, 潘金禾, 何鑫, 马玉洁, 赵新迪, 周长春, 张宁宁. 煤系锂和稀土的赋存特征与富集提取研究进展[J]. 矿产保护与利用, 2023, 43(6): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2023.06.001
引用本文: 张磊, 陈航超, 潘金禾, 何鑫, 马玉洁, 赵新迪, 周长春, 张宁宁. 煤系锂和稀土的赋存特征与富集提取研究进展[J]. 矿产保护与利用, 2023, 43(6): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2023.06.001
ZHANG Lei, CHEN Hangchao, PAN Jinhe, HE Xin, MA Yujie, ZHAO Xindi, ZHOU Changchun, ZHANG Ningning. Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2023.06.001
Citation: ZHANG Lei, CHEN Hangchao, PAN Jinhe, HE Xin, MA Yujie, ZHAO Xindi, ZHOU Changchun, ZHANG Ningning. Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2023.06.001

煤系锂和稀土的赋存特征与富集提取研究进展

  • 基金项目: 国家自然科学基金青年项目(52204292)
详细信息
    作者简介: 张磊(1998—),男,四川江油人,博士研究生,主要从事煤系战略性金属回收研究,E-mail:zhanglei-23@cumt.edu.cn
    通讯作者: 潘金禾(1992—),男,山东烟台人,副教授,主要从事煤基固废和战略性金属分离纯化研究,E-mail:jinhepan@cumt.edu.cn
  • 中图分类号: TD849;TD98

Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth

More Information
  • 战略性关键金属锂和稀土是重要的工业原料,对社会发展和国家安全具有不可替代的作用,随着经济发展,锂和稀土的市场供需矛盾日益突出。煤系锂和稀土储量丰富,因此其提取回收受到了世界各国的广泛关注。通过综合分析当前国内外煤系锂和稀土的研究成果,总结了锂和稀土的赋存特征,系统阐述了分选富集和化学浸出方面的最新研究进展。针对现有分选方式富集倍数低、化学助剂消耗量大、废渣废水产量多等问题,建议开发物理−化学联用方式定向富集煤及其副产物中的锂和稀土元素,提升其品位,降低后续化学浸出难度。同时推进煤及其副产物中多种伴生资源协同提取、绿色开发研究,实现煤系资源高附加值综合利用。

  • 加载中
  • 图 1  粉煤灰“分级—磁选”富集稀土元素流程[68]

    Figure 1. 

    图 2  粉煤灰“一步酸溶法”工艺流程[88]

    Figure 2. 

    图 3  煤矸石热活化—硝酸浸出—分离铁/镓—低温热解—水洗提纯工艺流程[89]

    Figure 3. 

    表 1  不同粒度组分粉煤灰样中稀土元素的含量[57]

    Table 1.  Contents of rare earth elements in coal fly ash samples of different particle size fractions[57]

    组分SFa1SF2SF3SF4SF5原样
    质量产率/%7.3013.5020.3035.3023.60100.00
    MMDb/μm2.205.409.7019.4043.2017.60
    La/(μg·g−1)37.0018.0028.0042.0024.0031.00
    Ce/(μg·g−1)85.0047.0070.0094.0061.0078.00
    Pr/(μg·g−1)13.006.409.5012.007.7010.00
    Nd/(μg·g−1)45.0026.0036.0051.0032.0043.00
    Sm/(μg·g−1)15.009.1013.0016.0010.0013.00
    Eu/(μg·g−1)3.802.303.203.202.103.10
    Gd/(μg·g−1)17.0010.0014.0014.009.4014.00
    Tb/(μg·g−1)3.001.802.502.301.502.20
    Dy/(μg·g−1)18.0011.0014.0015.009.8015.00
    Ho/(μg·g−1)3.902.302.902.801.902.90
    Er/(μg·g−1)12.006.708.508.005.308.30
    Tm/(μg·g−1)1.701.001.201.100.741.10
    Yb/(μg·g−1)13.007.108.607.804.807.90
    Lu/(μg·g−1)2.101.201.401.300.711.30
    REE/(μg·g−1)270.00150.00213.00271.00171.00231.00
    LREE/(μg·g−1)195.00107.00157.00215.00135.00175.00
    HREE/(μg·g−1)75.0043.0056.0056.0036.0056.00
    HREE/LREE/(μg·g−1)0.380.410.360.260.270.32
    a:SF(size fractions)表示粒度组分,在第一个分级步骤中,从粉煤灰中分离出SF1(最细粒级),剩余粗粒粉煤灰作为第二步的入料,降低分级机转速,分离出SF2,再依次进行分级获得SF3、SF4和SF5;
    b:MMD(mass median diameters)表示质量中位直径。
    下载: 导出CSV

    表 2  4种分选方法富集煤及其副产物中锂和稀土元素的特点

    Table 2.  Characteristics of enriching lithium and rare earth elements in coal and its by−products by four separation methods

    方法优势不足
    粒度分级流程简单,适用范围广富集倍数低
    重选适用范围广流程较复杂,条件难控制
    磁选流程简单,效率高仅适用于粉煤灰和
    部分原煤
    浮选效率高,富集倍数较高流程较复杂,要求
    原料粒度细
    下载: 导出CSV

    表 3  化学浸出法提取煤及其副产物中锂和稀土元素的特点

    Table 3.  Characteristics of extracting lithium and rare earth elements from coal and its by−products by chemical leaching

    方法优势不足
    直接浸出流程简单回收率低
    空白焙烧—浸出回收率高,流程经典可靠仅适用于原煤和煤矸石,能耗高
    助剂焙烧—浸出回收率高,适用范围广流程复杂,化学助剂消耗量大,废水废渣产量大
    下载: 导出CSV
  • [1]

    翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.

    ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.

    [2]

    侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417

    HOU Z Q, CHEN J, ZHAI M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417

    [3]

    王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.

    WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 848−866.

    [4]

    DOU S Q, XU D Y, ZHU Y G, et al. Critical mineral sustainable supply: Challenges and governance[J]. Futures, 2023, 146: 103101. doi: 10.1016/j.futures.2023.103101

    [5]

    李建武, 李天骄, 贾宏翔, 等. 中国战略性关键矿产目录厘定[J]. 地球学报, 2023, 44(2): 261−270.

    LI J W, LI T J, JIA H X, et al. Determination of China's strategic and critical minerals List[J]. Acta Geoscientica Sinica, 2023, 44(2): 261−270.

    [6]

    王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550−1559.

    WANG A J, YUAN X J. Security of China's strategic and critical minerals under background of great power competition[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1550−1559.

    [7]

    SEREDIN V V, DAI S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67−93. doi: 10.1016/j.coal.2011.11.001

    [8]

    宁树正, 黄少青, 朱士飞, 等. 中国煤中金属元素成矿区带[J]. 科学通报, 2019, 64(24): 2501−2513. doi: 10.1360/N972019-00377

    NING S Z, HUANG S Q, ZHU S F, et al. Mineralization zoning of coal−metal deposits in China[J]. Chinese Science Bulletin, 2019, 64(24): 2501−2513. doi: 10.1360/N972019-00377

    [9]

    代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal−bearing sequences in China: enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    [10]

    DAI S F, FINKELMAN R B. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005

    [11]

    SUN B L, LIU Y X, TAJCMANOVA L, et al. In−situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu Coalfield, northern China[J]. Ore Geology Reviews, 2022, 144: 104825. doi: 10.1016/j.oregeorev.2022.104825

    [12]

    JI B, LI Q, ZHANG W C. Rare earth elements (REEs) recovery from coal waste of the Western Kentucky No. 13 and Fire Clay Seams. Part I: Mineralogical characterization using SEM−EDS and TEM−EDS[J]. Fuel, 2022, 307: 121854. doi: 10.1016/j.fuel.2021.121854

    [13]

    KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135−148. doi: 10.1016/j.coal.2009.01.002

    [14]

    DAI S F, REN D Y, CHOU C L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3−21. doi: 10.1016/j.coal.2011.02.003

    [15]

    宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报, 2017, 42(9): 2214−2225.

    NING S Z, DENG X L, LI C C, et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society, 2017, 42(9): 2214−2225.

    [16]

    QIN S J, ZHAO C L, LI Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil Gas and Coal Technology, 2015, 9(2): 215−229. doi: 10.1504/IJOGCT.2015.067490

    [17]

    DAI S F, LI D, CHOU C L, et al. Mineralogy and geochemistry of boehmite−rich coals: new insights from the haerwusu surface mine, jungar coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2008, 74(3/4): 185−202. doi: 10.1016/j.coal.2008.01.001

    [18]

    DAI S F, JIANG Y F, WARD C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology, 2012, 98: 10−40. doi: 10.1016/j.coal.2012.03.003

    [19]

    衣姝, 王金喜. 安家岭矿9号煤中锂的赋存状态和富集因素分析[J]. 煤炭与化工, 2014, 37(9): 7−10.

    YI S, WANG J X. Lithium occurrences and enrichment factor law in No. 9 coal seam of Anjialing mine[J]. Coal and Chemical Industry, 2014, 37(9): 7−10.

    [20]

    ZHOU M X, ZHAO L, WANG X B, et al. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium[J]. Ore Geology Reviews, 2021, 139: 104582. doi: 10.1016/j.oregeorev.2021.104582

    [21]

    DAI S F, REN D Y, TANG Y G, et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China[J]. International Journal of Coal Geology, 2005, 61(1/2): 119−137. doi: 10.1016/j.coal.2004.07.003

    [22]

    宋杨. 贵州普安某高硫煤脱硫降灰试验研究[D]. 贵阳: 贵州大学, 2020.

    SONG Y. Study on desulfurization and ash reduction of a high sulfur coal in Pu'an of Guizhou Provine[D]. Guiyang: Guizhou University, 2020.

    [23]

    DU F P, NING S Z, QIAO J W, et al. Geochemical and mineralogical characteristics of the Li−Sr−enriched coal in the Wenjiaba mine, Guizhou, SW China[J]. ACS Omega, 2021, 6(13): 8816−8828. doi: 10.1021/acsomega.0c05663

    [24]

    刘云霞. 山西省典型矿区煤及煤灰中锂镓赋存状态与转化机制[D]. 太原: 太原理工大学, 2022.

    LIU Y X. Occurrence and transformation of lithium and gallium in coal and coal ash from typical mining areas of Shanxi Provine[D]. Taiyuan: Taiyuan University of Technology, 2022.

    [25]

    赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750−1760.

    ZHAO L, WANG X B, DAI S F. Lithium resources in coal−bearing strata: Occurrence, mineralization, and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750−1760.

    [26]

    程晨, 宋杨, 臧静坤, 等. 贵州普安矿区20号煤中锂的赋存状态及逐级化学提取实验研究[J]. 煤田地质与勘探, 2022, 50(10): 44−53.

    CHENG C, SONG Y, ZANG J K, et al. Occurrence modes and stepwise chemical extraction experiment of lithium in No. 20 coal seam in Pu'an mining area, Guizhou Province[J]. Coal Geology & Exploration, 2022, 50(10): 44−53.

    [27]

    朱士飞, 曹泊, 吴国强, 等. 广西上林万福矿区煤中锂、镓和稀土元素逐级提取实验研究[J]. 中国煤炭地质, 2021, 33(9): 38−41.

    ZHU S F, CAO B, WU G Q, et al. Experimental study of coal lithium, gallium and REE stepwise extraction in Wanfu mine area, Shanglin, Guangxi[J]. Coal Geology of China, 2021, 33(9): 38−41.

    [28]

    ZHANG W C, HONAKER R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample[J]. Fuel, 2020, 267: 117236. doi: 10.1016/j.fuel.2020.117236

    [29]

    ZHANG W C, NOBLE A, YANG X B, et al. Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal[J]. Fuel, 2020, 268: 117319. doi: 10.1016/j.fuel.2020.117319

    [30]

    HU P P, HOU X J, ZHANG J B, et al. Distribution and occurrence of lithium in high−alumina−coal fly ash[J]. International Journal of Coal Geology, 2018, 189: 27−34. doi: 10.1016/j.coal.2018.02.011

    [31]

    徐飞. 燃煤过程中关键元素的赋存特征及迁移转化规律[D]. 邯郸: 河北工程大学, 2021.

    XU F. Occurrence characteristics, migration and transformation of critical elements during coal combustion[D]. Handan: Hebei University of Engineering, 2021.

    [32]

    曹泊, 朱士飞, 秦云虎, 等. 煤中稀土元素研究现状及展望[J]. 煤炭科学技术, 2022, 50(4): 181−194.

    CAO B, ZHU S F, QIN Y H, et al. Research status and prospect of rare earth elements in coal[J]. Coal Science and Technology, 2022, 50(4): 181−194.

    [33]

    秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.

    QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal−related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.

    [34]

    刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11): 2368−2375.

    LIU D R, GAO G M, CHI J Z, et al. Distribution rule of rare earth and trace elements in the Heidaigou openpit coal mine in the Junggar coal field[J]. Acta Geologica Sinica, 2018, 92(11): 2368−2375.

    [35]

    刘蔚阳, 樊景森, 王金喜, 等. 宁武煤田煤中稀土元素地球化学特征研究[J]. 煤炭科学技术, 2020, 48(4): 237−245.

    LIU Y Y, FAN J S, WANG J X, et al. Study on geochemical characteristics of rare earth elements from coal in Ningwu Coalfield[J]. Coal Science and Technology, 2020, 48(4): 237−245.

    [36]

    DAI S F, ZHOU Y P, REN D Y, et al. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China[J]. Science in China Series D:Earth Sciences, 2007, 50(5): 678−688. doi: 10.1007/s11430-007-0001-4

    [37]

    DAI S F, XIE P P, JIA S H, et al. Enrichment of U−Re−V−Cr−Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews, 2017, 80: 1−17. doi: 10.1016/j.oregeorev.2016.06.015

    [38]

    ZHANG W C, NOBLE A. Mineralogy characterization and recovery of rare earth elements from the roof and floor materials of the Guxu coalfield[J]. Fuel, 2020, 270: 117533. doi: 10.1016/j.fuel.2020.117533

    [39]

    YANG B, CHENG C, LI Y X, et al. Modes of occurrence and pre−concentration of rare earth elements in No. 17 coal in Liupanshui coalfield, China[J]. Journal of Rare Earths, 2022, 40(8): 1323−1332. doi: 10.1016/j.jre.2021.09.001

    [40]

    YU C L, MU N N, HUANG W H, et al. Major and rare earth element characteristics of Late Paleozoic coal in the southeastern Qinshui basin: Implications for depositional environments and provenance[J]. ACS Omega, 2022, 7(35): 30856−30878. doi: 10.1021/acsomega.2c02596

    [41]

    HOWER J C, GROPPO J G, HENKE K R, et al. Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash[J]. Minerals, 2015, 5(2): 356−366. doi: 10.3390/min5020356

    [42]

    DAI S F, ZHAO L, HOWER J C, et al. Petrology, mineralogy, and chemistry of size−fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements[J]. Energy & Fuels, 2014, 28(2): 1502−1514.

    [43]

    SMOLKA−DANIELOWSKA D. Rare earth elements in fly ashes created during the coal burning process in certain coal−fired power plants operating in Poland – Upper Silesian Industrial Region[J]. Journal of Environmental Radioactivity, 2010, 101(11): 965−968. doi: 10.1016/j.jenvrad.2010.07.001

    [44]

    KOLKER A, SCOTT C, HOWER J C, et al. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP−RG ion microprobe[J]. International Journal of Coal Geology, 2017, 184: 1−10. doi: 10.1016/j.coal.2017.10.002

    [45]

    潘金禾. 粉煤灰中稀土元素赋存机制及富集提取研究[D]. 徐州: 中国矿业大学, 2021.

    PAN J H. Study on the enrichment, extraction, and mechanism of occurrence of rare earth elements in coal fly ash[D]. Xuzhou: China University of Mining and Technology, 2021.

    [46]

    李梦闪, 黄伟欣, 张臻悦, 等. 煤及其副产物中稀土元素的赋存特征与选矿富集研究进展[J]. 有色金属(选矿部分), 2021(6): 61−81.

    LI M S, HUANG W X, ZHANG Z Y, et al. A review on occurrence characteristics and beneficiation enrichments of rare earth elements in coal and its by−products[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 61−81.

    [47]

    刘建婧. 平朔煤中矿物质及微量元素镓、锂分布规律研究[D]. 太原: 太原理工大学, 2019.

    LIU J J. Distribution of minerals and trace elements gallium and lithium in Pingshuo coal[D]. Taiyuan: Taiyuan University of Technology, 2019.

    [48]

    CHENG W, YANG R D, ZHANG Q, et al. Washability and distribution behaviors of trace elements of a high−sulfur coal, SW Guizhou, China[J]. Minerals, 2018, 8(2): 59. doi: 10.3390/min8020059

    [49]

    张森. 煤中微量有价元素赋存状态及迁移规律研究[D]. 太原: 山西大学, 2019.

    ZHANG S. Study on the modes of occurrence and volatility of trace valuable elements in coals[D]. Taiyuan: Shanxi University, 2019.

    [50]

    宋杨, 杨欢欢, 程伟. 黔西南某中高硫煤脱硫过程中微量元素的分配特性研究[J]. 矿冶工程, 2020, 40(4): 45−48.

    SONG Y, YANG H H, CHENG W. Distribution of trace elements amid desulfurization of medium−high sulfur coal in southwestern Guizhou[J]. Mining and Metallurgical Engineering, 2020, 40(4): 45−48.

    [51]

    张磊. 煤系锂、镓和稀土的洗选分布规律及焙烧浸出研究[D]. 徐州: 中国矿业大学, 2023.

    ZHANG L. Study on washing distribution laws and roasting leaching of coal−based lithium, gallium and rare earth elements[D]. Xuzhou: China University of Mining and Technology, 2023.

    [52]

    ZHANG L, CHEN H C, PAN J H, et al. The effect of physical separation and calcination on enrichment and recovery of critical elements from coal gangue[J]. Minerals, 2022, 12(11): 1371. doi: 10.3390/min12111371

    [53]

    MA Z B, SHAN X Y, CHENG F Q. Distribution characteristics of valuable elements, Al, Li, and Ga, and rare earth elements in feed coal, fly ash, and bottom ash from a 300 MW circulating fluidized bed boiler[J]. ACS Omega, 2019, 4(4): 6854−6863. doi: 10.1021/acsomega.9b00280

    [54]

    XU F, QIN S J, LI S Y, et al. Distribution, occurrence mode, and extraction potential of critical elements in coal ashes of the Chongqing Power Plant[J]. Journal of Cleaner Production, 2022, 342: 130910. doi: 10.1016/j.jclepro.2022.130910

    [55]

    ZHOU C C, LI C, LI W W, et al. Distribution and preconcentration of critical elements from coal fly ash by integrated physical separations[J]. International Journal of Coal Geology, 2022, 261: 104095. doi: 10.1016/j.coal.2022.104095

    [56]

    LI C, ZHOU C C, LI W W, et al. Enrichment of critical elements from coal fly ash by the combination of physical separations[J]. Fuel, 2023, 336: 127156. doi: 10.1016/j.fuel.2022.127156

    [57]

    LANZERSTORFER C. Pre−processing of coal combustion fly ash by classification for enrichment of rare earth elements[J]. Energy Reports, 2018, 4: 660−663. doi: 10.1016/j.egyr.2018.10.010

    [58]

    GONG Y B, SUN J M, ZHANG Y M, et al. Dependence on the distribution of valuable elements and chemical characterizations based on different particle sizes of high alumina fly ash[J]. Fuel, 2021, 291: 120225. doi: 10.1016/j.fuel.2021.120225

    [59]

    PAN J H, ZHOU C C, TANG M C, et al. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure[J]. Fuel, 2019, 237: 555−565. doi: 10.1016/j.fuel.2018.09.139

    [60]

    CHENG W, ZHANG Q, YANG R D, et al. Occurrence modes and cleaning potential of sulfur and some trace elements in a high−sulfur coal from Pu’an coalfield, SW Guizhou, China[J]. Environmental Earth Sciences, 2014, 72(1): 35−46. doi: 10.1007/s12665-013-2934-6

    [61]

    CHEN H C, ZHANG L, PAN J H, et al. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108818. doi: 10.1016/j.jece.2022.108818

    [62]

    LIN R H, HOWARD B H, ROTH E A, et al. Enrichment of rare earth elements from coal and coal by−products by physical separations[J]. Fuel, 2017, 200: 506−520. doi: 10.1016/j.fuel.2017.03.096

    [63]

    HONAKER R, GROPPO J, BHAGAVATULA A, et al. Recovery of rare earth minerals and elements from coal and coal byproducts: Coal Prep 2016[C], 2016.

    [64]

    ZHANG W, HONAKER R, GROPPO J. Concentration of rare earth minerals from coal by froth flotation[J]. Minerals & Metallurgical Processing, 2017, 34(3): 132−137.

    [65]

    ZHANG W C, YANG X B, HONAKER R Q. Association characteristic study and preliminary recovery investigation of rare earth elements from Fire Clay seam coal middlings[J]. Fuel, 2018, 215: 551−560. doi: 10.1016/j.fuel.2017.11.075

    [66]

    WEN Z P, CHEN H C, PAN J H, et al. Grinding activation effect on the flotation recovery of unburned carbon and leachability of rare earth elements in coal fly ash[J]. Powder Technology, 2022, 398: 117045. doi: 10.1016/j.powtec.2021.117045

    [67]

    潘金禾, 周长春, 温智平, 等. 四川某地粉煤灰中稀土元素的富集回收[J]. 中国矿业大学学报, 2022, 51(5): 998−1006.

    PAN J H, ZHOU C C, WEN Z P, et al. Recovery of rare earth elements in coal fly ash from Sichuan Province[J]. Journal of China University of Mining & Technology, 2022, 51(5): 998−1006.

    [68]

    PAN J H, NIE T C, HASSAS B V, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248: 126112. doi: 10.1016/j.chemosphere.2020.126112

    [69]

    ROSITA W, BENDIYASA I M, PERDANA I, et al. Sequential particle−size and magnetic separation for enrichment of rare−earth elements and yttrium in Indonesia coal fly ash[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103575. doi: 10.1016/j.jece.2019.103575

    [70]

    HOWER J C, GROPPO J G, JOSHI P, et al. Distribution of lanthanides, yttrium, and scandium in the pilot−scale beneficiation of fly ashes derived from eastern Kentucky coals[J]. Minerals, 2020, 10(2): 105. doi: 10.3390/min10020105

    [71]

    ZHANG W C, HONAKER R. Calcination pretreatment effects on acid leaching characteristics of rare earth elements from middlings and coarse refuse material associated with a bituminous coal source[J]. Fuel, 2019, 249: 130−145. doi: 10.1016/j.fuel.2019.03.063

    [72]

    ZHANG W C, REZAEE M, BHAGAVATULA A, et al. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by−products[J]. International Journal of Coal Preparation and Utilization, 2015, 35(6): 295−330. doi: 10.1080/19392699.2015.1033097

    [73]

    王梓硕, 臧静坤, 王小蕊, 等. 用氧化焙烧—盐酸浸出工艺从煤矸石中提取锂试验研究[J]. 湿法冶金, 2023, 42(6): 574−581.

    WANG Z S, ZANG J K, WANG X R, et al. Extraction of lithium from coal gangue by oxidation roasting−hydrochloric acid leaching process[J]. Hydrometallurgy of China, 2023, 42(6): 574−581.

    [74]

    聂天成. 焙烧活化对煤矸石中稀土元素的赋存及浸出影响研究[D]. 徐州: 中国矿业大学, 2021.

    NIE T C. Study on the effect of roasting activation on the occurrence and leaching of rare earth elements in coal refuse[D]. Xuzhou: China University of Mining and Technology, 2021.

    [75]

    赵泽森, 高建明, 郭彦霞, 等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究, 2018, 31(3): 569−576.

    ZHAO Z S, GAO J M, GUO Y X, et al. Acid−alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences, 2018, 31(3): 569−576.

    [76]

    TAGGART R K, HOWER J C, DWYER G S, et al. Trends in the rare earth element content of U. S.−Based coal combustion fly ashes[J]. Environmental Science & Technology, 2016, 50(11): 5919−5926.

    [77]

    TALAN D, HUANG Q Q. A review study of rare earth, cobalt, lithium, and manganese in coal−based sources and process development for their recovery[J]. Minerals Engineering, 2022, 189: 107897. doi: 10.1016/j.mineng.2022.107897

    [78]

    SHAO S, MA B Z, WANG C Y, et al. Extraction of valuable components from coal gangue through thermal activation and HNO3 leaching[J]. Journal of Industrial and Engineering Chemistry, 2022, 113: 564−574. doi: 10.1016/j.jiec.2022.06.033

    [79]

    ZHANG L, CHEN H C, PAN J H, et al. Extraction of lithium from coal gangue by a roasting−leaching process[J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 863−878. doi: 10.1080/19392699.2022.2083611

    [80]

    PAN J H, NIE T C, ZHOU C C, et al. The effect of calcination on the occurrence and leaching of rare earth elements in coal refuse[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108355. doi: 10.1016/j.jece.2022.108355

    [81]

    HONAKER R Q, ZHANG W, WERNER J. Acid leaching of rare earth elements from coal and coal ash: Implications for using fluidized bed combustion to assist in the recovery of critical materials[J]. Energy & Fuels, 2019, 33(7): 5971−5980.

    [82]

    PAN J H, LONG X, ZHANG L, et al. The discrepancy between coal ash from muffle, circulating fluidized bed (CFB), and pulverized coal (PC) furnaces, with a focus on the recovery of iron and rare earth elements[J]. Materials, 2022, 15(23): 8494. doi: 10.3390/ma15238494

    [83]

    XU H Q, LIU C L, MI X, et al. Extraction of lithium from coal fly ash by low−temperature ammonium fluoride activation−assisted leaching[J]. Separation and Purification Technology, 2021, 279: 119757. doi: 10.1016/j.seppur.2021.119757

    [84]

    汤梦成. 碱熔−酸浸提取粉煤灰中稀土元素研究[D]. 徐州: 中国矿业大学, 2019.

    TANG M C. Study on extraction of rare earth elements from coal fly ash by alkali fusion−acid leaching[D]. Xuzhou: China University of Mining and Technology, 2019.

    [85]

    QIN Q Z, DENG J S, GENG H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765. doi: 10.1016/j.jclepro.2022.130765

    [86]

    成俊伟, 任卫国, 王建成, 等. 吸附法提取煤矸石中锂的工艺[J]. 化工进展, 2019, 38(8): 3589−3595.

    CHENG J W, REN W G, WANG J C, et al. Extraction of lithium from coal gangue by manganese ion sieve adsorption[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3589−3595.

    [87]

    NAWAB A, YANG X B, HONAKER R. An acid baking approach to enhance heavy rare earth recovery from bituminous coal−based sources[J]. Minerals Engineering, 2022, 184: 107610. doi: 10.1016/j.mineng.2022.107610

    [88]

    郭昭华. 粉煤灰“一步酸溶法”提取氧化铝工艺技术及工业化发展研究[J]. 煤炭工程, 2015, 47(7): 5−8. doi: 10.11799/ce201507002

    GUO Z H. Study and industrialization development of one−step acid dissolution technology for alumina extraction from fly ash[J]. Coal Engineering, 2015, 47(7): 5−8. doi: 10.11799/ce201507002

    [89]

    邵爽. 煤矸石热活化与硝酸浸出铝镓锂的基础研究[D]. 北京: 北京科技大学, 2023.

    SHAO S. Basic research on thermal activation and HNO3 leaching of coal gangue to extract Al/Ga/Li[D]. Beijing: University of Science and Technology Beijing, 2023.

  • 加载中

(3)

(3)

计量
  • 文章访问数:  520
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-11-13
刊出日期:  2023-12-25

目录