Research Progress on the Utilization of Coal Gangue for Soil Remediation and as Soil Amendment Agents
-
摘要:
煤矸石大量堆存不仅对周围环境造成污染,也是对资源本身的一种浪费。系统阐述了煤矸石在土壤化利用与土壤改良剂制备方面的研究现状,主要包括煤矸石直接覆土,煤矸石与土壤、有机质、菌类、固废等直接混配改良土壤,改性煤矸石制肥或制备多孔生态土壤,改性煤矸石与外源材料混配制育苗基质、肥料及人造土壤。我国在利用煤矸石进行土壤化利用与土壤改良剂方面已有一些进展,但还应注意对煤矸石重金属的控制,尽可能实现煤矸石的大规模消纳。最后指出了煤矸石在土壤化利用与土壤改良剂方面存在的问题,并提出了相应的建议,以期为相关研究提供参考。
Abstract:The massive accumulation of coal gangue not only pollutes the surrounding environment but also constitutes a waste of the resource itself. The pathways and current research status of coal gangue in soil utilization and as soil amendment agents are systematically reviewed, including direct land application of coal gangue, improvement of soil with mixtures of coal gangue, soil, organic matter, fungi, and solid waste, as well as the production of fertilizers or the preparation of porous ecological soil from modified coal gangue. Additionally, the use of modified coal gangue mixed with exogenous materials to cultivate seedling substrates, fertilizers, and artificial soils is discussed. There has been some progress in utilizing coal gangue for soil utilization and as soil amendment agents in China, but the control of heavy metals in coal gangue should also be paid attention to enable its large-scale consumption as much as possible. Finally, the paper identifies existing issues in the use of coal gangue for soil utilization and soil amendment agents, and provides corresponding suggestions to serve as a reference for related research.
-
Key words:
- coal gangue /
- soil conditioner /
- soil utilization /
- comprehensive utilization
-
-
图 2 煤矸石山新型坡面覆盖方式[26]
Figure 2.
图 3 丛枝菌根真菌作用示意图[39]
Figure 3.
表 1 煤矸石主要成分[15]
Table 1. Main components of coal gangue
/% 类型 SiO2 Al2O3 Fe2O3 CaO MgO SO3 其他 烧失量 碳质
页岩46~62 17~23 0.2~20 0.5~7.5 0.6~1.3 0~5 0.5~3.0 20~45 泥质
页岩44~55 44~55 0.2~26 9~25 1~5 0.3~7.0 0.3~1.4 10~28 砂质
页岩45~52 6~15 0.2~21 14~21 2~6 2~4 0.3~1.0 6~20 表 2 煤矸石与土壤化学成分对比[15]
Table 2. Comparison of chemical composition of coal gangue and soil
/% 类别 有机质 总氮 总磷 总钾 总钙 总镁 总硫 总铁 煤矸石 15~25 0.19~
0.870.23~
0.470.86~
1.710.02~
0.430.004~
0.1250.021~
0.0390.014~
0.197土壤 2 0.1 0.08 1.36 1.37 0.6 0.085 3.8 表 3 煤矸石与土壤矿物成分对比
Table 3. Comparison of mineral composition between coal gangue and soil
类别 黏土矿物 其他矿物 煤矸石 高岭石、伊利石、
蒙脱石、绿泥石等石英、长石、云母、
白云石、方解石、
氢氧化铝、二氧化硅胶体、
蛋白石等土壤 高岭石、伊利石、蒙脱石、绿泥石、埃洛石、蛭石等 石英、长石、云母、
白云石、方解石、
黄铁矿、铝土矿等表 4 煤矸石山常见问题及与黄土混配的改良效果
Table 4. Common issues of coal gangue dumps and the improvement effects of mixing with loess
问题类型 存在问题 改良效果 土壤酸碱性 裸露矸石山高盐强酸环境;
植被无法生存黄土的添加可使煤矸石山的酸碱性接近正常黄土水平 土壤水土侵蚀状况 裸露矸石山土壤侵蚀严重;
水土流失是植被建设的关键因素由于表层矸石风化失水后形成的干层颗粒较粗,与下层的毛细管联系较弱,下层大部分水分须通过扩散作用方可被蒸发,致使这个干层具有一定的保水性能 植物产量 大面积深色矸石易吸热升温灼伤幼苗;
难保证出苗率,降低植被产量提高了保水保肥性,能够为植被的生长提供充足的水分和养分,利于植被恢复 表 5 煤矸石基多孔土壤基质的类型
Table 5. Types of porous soil matrix based on coal gangue
原料 最优配比 性能 煤矸石为主体,
水泥为黏结剂水泥掺入量5%、煤矸石粉掺入量95%时
各项性能最优保水量为86%,流失率为0.93%,保温性能良好,
并具有良好的肥效缓释性煤矸石为主体,多组分自胶凝粉体为黏结剂 多组分自胶凝粉体掺入量12%、
煤矸石粉按掺入量88%时各项性能最优保水量为80%,流失率为1.53%,保温性能良好 煤矸石为主体,工业淀粉为黏结剂 淀粉掺入量8%、煤矸石粉掺入量81.5%时
各项性能最优吸水率在40%左右,流失率小于1%,
孔隙率40%~50%,重金属含量低于国家标准 -
[1] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.
LI Z, XUE J, ZHU Z L, et al. Research progress of comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.
[2] 叶吉文, 沈国栋, 路露. 煤矸石的危害与综合利用[J]. 中国资源综合利用, 2010, 28(5): 32−34.
YE J W, SHEN G D, LU L. Hazards and comprehensive utilization of coal gangue[J]. China Resources Comprehensive Utilization, 2010, 28(5): 32−34.
[3] 张华林, 滕泽栋, 江晓亮, 等. 废弃煤矸石资源化利用研究进展[J]. 环境化学, 2023, 43(6): 1−14.
ZHANG H L, TENG Z D, JIANG X L, et al. Research progress on resource utilization of waste coal gangue[J]. Environmental Chemistry, 2023, 43(6): 1−14.
[4] 李培新, 许家勤, 高树东. 掘进煤矸石中煤炭资源回收方法[J]. 煤矿开采, 2006(5): 99−100.
LI P X, XU J Q, GAO S D. Recovery method of coal resources in coal gangue[J]. Coal Mining Technology, 2006(5): 99−100.
[5] 李瑜, 舒新前, 张蕾, 等. 酸浸法提取煤矸石中Al2O3的研究[J]. 环境污染与防治, 2013, 35(7): 70−73.
LI Y, SHU X Q, ZHANG L, et al. Study on the acid leaching of Al2O3 from coal gangue[J]. Environmental Pollution and Prevention, 2013, 35(7): 70−73.
[6] 刘成龙, 谢宇充, 夏举佩, 等. 煤矸石中和渣酸化提取铝、钛实验研究[J]. 硅酸盐通报, 201 5, 34(4): 966−972.
LIU C L, XIE Y C, XIA J P, et al. Study on extracting aluminum and titanium from neutral residues of coal gangue by acid leaching[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(4): 966−972.
[7] 谢娟, 夏润南, 杜红霞, 等. α−Fe2O3−ZnO/煤矸石复合光催化剂的制备及其降解五氯酚性能的研究[J]. 化工新型材料, 2019, 47(12): 165−168+172.
XIE J, XIA R N, DU H X, et al. Preparation of α−Fe2O3−ZnO/coal gangue composite photocatalyst and their application in PCP degradation[J]. New Chemical Materials, 2019, 47(12): 165−168+172.
[8] 王爱国, 朱愿愿, 徐海燕, 等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报, 2019, 38(7): 2076−2086.
WANG A G, ZHU Y Y, XU H Y, et al. Research progress on coal gangue aggregate for concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2076−2086.
[9] 陈杰, 水中和, 孙涛, 等. 活化煤矸石在水泥基材料中的早期水化动力学研究[J]. 硅酸盐通报, 2019, 38(7): 1983−1990.
CHEN J, SHUI Z H, SUN T, et al. Early hydration kinetics research of calcined coal gangue in cement−based materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 1983−1990.
[10] LIU X. Low−carbon utilization of coal gangue under the carbon neutralization strategy: a short review[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 1978−1987. doi: 10.1007/s10163-023-01712-w
[11] 胡振琪, 张子璇, 孙煌. 试论矿山生态修复的地质成土[J]. 煤田地质与勘探, 2022, 50(12): 21−29.
HU Z Q, ZHANG Z X, SUN H. Geological soil formation for ecological restoration of mining areas and its case study[J]. Coal Geology & Exploration, 2022, 50(12): 21−29.
[12] 任荣彬. 土壤污染控制与土地的可持续利用[J]. 企业技术开发, 2016, 35(3): 56−57.
REN R B. Soil pollution control and sustainable land use[J]. Technological Development of Enterprise, 2016, 35(3): 56−57.
[13] 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443−2453.
GUO Y X, ZHANG Y Y, CHENG F Q. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7): 2443−2453.
[14] 唐升引, 蒋永吉, 陈静, 等. 煤矸石主要物理特性及在栽培基质中应用的可行性分析[J]. 干旱地区农业研究, 2014, 32(3): 209−213.
TANG S Y, JIANG Y J, CHEN J, et al. Major physical characteristics of gangue and feasible analysis for the application in cultivation matrix[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 209−213.
[15] 韩彦明, 郭玉玮, 范利国, 等. 生活污泥一分钟制营养土的方法: CN2022115386 19.9[P]. 2023−07−24.
HAN Y M, GUO Y W, FAN L G, et al. The method of making nutritive soil from domestic sludge in one minute: CN2022115386 19.9[P]. 2023−07−24.
[16] 张庆玲. 利用煤矸石研制有机矿物肥料的尝试[J]. 煤矿环境保护, 1996, 10(1): 24−26.
ZHANG Q L. An attempt to develop organic mineral fertilizer from coal gangue[J]. Coal Mine Environmental Protection, 1996, 10(1): 24−26.
[17] 邢成江, 邢丽萍. 煤矸石覆盖农田好处多[J]. 农业科技信息, 1994(9): 30.
XING C J, XING L P. Covering farmland with coal gangue has many advantages[J]. Agricultural Science and Technology Information, 1994(9): 30.
[18] 段永红, 赵景逵. 煤矸石山覆盖种植对植物根系的影响[J]. 煤矿环境保护, 1999(1): 41−43.
DUAN Y H, ZHAO J K. Effect of mulch planting of coal gangue mountain on plant root system[J]. Coal Mine Environmental Protection, 1999(1): 41−43.
[19] 杜韬, 王冬梅, 张泽洲, 等. 煤矸石植生基质保水性能对黑麦草生长的影响[J]. 中国水土保持科学, 2019, 17(4): 75−84.
DU T, WANG D M, ZHANG Z Z, et al. Effect of the water−retaining property of coal gangue planting substrate on the growth of lolium perenne[J]. Science of Soil and Water Conservation, 2019, 17(4): 75−84.
[20] 马柳. 以煤矸石为基质的生菜种植土壤改良配比研究[D]. 沈阳: 辽宁大学, 2021.
MA L. Study on soil improvement ratio of lettuce growing with coal gangue as the substrate[D]. Shenyang: Liaoning University, 2021.
[21] 李依临, 尚海丽, 温欣, 等. 多源废弃物配施对矿区土壤的改良效应[J]. 北方农业学报, 2022, 50(4): 74−82.
LI Y L, SHANG H L, WEN X, et al. Effect of multi−source waste combined application on soil improvement in mining area[J]. Journal of Northern Agriculture, 2022, 50(4): 74−82.
[22] 关禹. 煤矸石的肥效及重金属活性钝化的研究[D]. 阜新: 辽宁工程技术大学, 2015.
GUAN Y. Study on fertilizer efficiency and passivation of heavy metal activity of coal gangue[D]. Fuxin: Liaoning Technical University, 2015.
[23] BU N J, LIU X M, SONG S L, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31: 2699−2710. doi: 10.1016/j.apt.2020.04.035
[24] 王丽艳, 张成梁, 韩有志, 等. 煤矸石山不同植被恢复模式对土壤侵蚀和养分流失的影响[J]. 中国水土保持科学, 2011, 9(2): 93−99+105.
WANG L Y, ZHANG C L, HAN Y Z, et al. Effects of different vegetation restoration modes on soil erosion and nutrient loss in coal gangue mountains[J]. Science of Soil and Water Conservation, 2011, 9(2): 93−99+105.
[25] 房颖信. 煤矸石区域坡面土壤侵蚀与水土保持措施[J]. 山东水利, 2022(7): 93−94.
FANG Y X. Slope erosion and soil−water conservation measures in coal gangue area[J]. Shandong Water Conservancy, 2022(7): 93−94.
[26] 宋楠. 煤矸石山坡面覆盖对土壤改良和植被恢复的影响研究[D]. 北京: 北京林业大学, 2012.
SONG N. Research of coal gangue slope surface cover of soil improvement and vegetation restoration[D]. Beijing: Beijing Forestry University, 2012.
[27] 马保国, 王健, 刘婧然, 等. 煤矸石基质土壤的水分入渗试验研究[J]. 煤炭学报, 2014, 39(12): 2501−2506.
MA B G, WANG J, LIU J R, et al. Experimental study on water infiltration of soil weathering coal gangue[J]. Journal of China Coal Society, 2014, 39(12): 2501−2506.
[28] 邵玉飞, 马建, 陈欣. 利用煤矸石制作水稻育苗基质的研究[J]. 农业资源与环境学报, 2017, 34(6): 555−561.
SHAO Y F, MA J, CHEN X. Rice seedling substrate produced by coal gangue[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 555−561.
[29] GE M, CHEN G, HONG J, et al. Screening for formulas of complex substrates for seedling cultivation of tomato and marrow squash[J]. Procedia Environmental Sciences, 2012(16): 606−615.
[30] ABAD M, NOGUERA P, BURÉS S. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain[J]. Bioresource Technology, 2001(77): 197−200.
[31] 张秀丽, 张晓明, 杜东明. 秸秆型基质在番茄育苗上的应用[J]. 辽宁农业职业技术学院学报, 2005(7): 4−5.
ZHANG X L, ZHANG X M, DU D M. Application of straw matrix in tomato seedling cultivation[J]. Journal of Liaoning Agricultural College, 2005(7): 4−5.
[32] RAVIV M, OKA Y, KATAN J, et al. High−nitrogen compost as a medium for organic container−grown crops[J]. Bioresource Technology, 2005, 96(4): 419−427. doi: 10.1016/j.biortech.2004.06.001
[33] LI J, WANG J. Comprehensive utilization and environmental risks of coal gangue: a review[J]. Journal of Cleaner Production, 2019, 239.
[34] 李娜, 牛明芬, 马建, 等. 秸秆与煤矸石混配基质对水稻生长特性的影响[J]. 环境科学与技术, 2019, 42(11): 154−161.
LI N, NIU M F, MA J, et al. Effects of mixed substrate by pretreatment corn straw and coal gangue on growth characteristics of rice seedlings[J]. Environmental Science & Technology, 2019, 42(11): 154−161.
[35] 毕银丽, 吴王燕, 刘银平. 丛枝菌根在煤矸石山土地复垦中的应用[J]. 生态学报, 2007, 27(9): 3738−3743.
BI Y L, WU W Y, LIU Y P. Application of arbuscular mycorrhiza in land reclamation of coal gangue mountain[J]. Acta Ecologica Sinica, 2007, 27(9): 3738−3743.
[36] 甄莉娜, 刘丽珍, 牛艳, 等. 煤矸石山不同植物根际土壤AM真菌群落多样性分析[J]. 草地学报, 2022, 30(8): 2009−2018.
ZHEN L N, LIU L Z, NIU Y, et al. Analysis of AM fungi community diversity in rhizosphere soil of different vegetation in coal gangue mountain[J]. Acta Agrestia Sinica, 2022, 30(8): 2009−2018.
[37] 赵仁鑫, 郭伟, 付瑞英, 等. 丛枝菌根真菌在不同类型煤矸石山植被恢复中的作用[J]. 环境科学, 2013, 34(11): 4447−4454.
ZHAO R X, GUO W, FU R Y, et al. Effects of arbuscular mycorrhizal fungi on the vegetation restoration of different types of coal mine spoil banks[J]. Environmental Science, 2013, 34(11): 4447−4454.
[38] 孔涛, 张开, 黄丽华, 等. 菌剂混施对各粒径矸石性质及苜蓿生长的影响[J]. 煤炭学报, 2022: 1−12.
KONG T, ZHANG K, HUANG L H, et al. Effects of mixed application of microbial agents on growth and substrate properties of alfalfa in coal gangue matrix with different particle sizes[J]. Journal of China Coal Society, 2022: 1−12.
[39] ZHANG L, ZHOU J, GEORGE T, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science, 2021, 27(4): 402−411.
[40] LIU L, LIU Q, LI Y, et al. Occurrence of iron in the minerals of carboniferous coal gangue of the Pingshuo open−pit mine, North China[J]. Clays and Clay Minerals, 2022, 70(5): 695−711. doi: 10.1007/s42860-022-00211-7
[41] INOUE N, HAMANAKA A, SHIMADA H, et al. Fundamental study on application of fly ash as topsoil substitute for the reclamation of mined land in Indonesian open cut coal mine[C] The Beijing International Symposium Land Reclamation And Ecological Restoration 2024.
[42] SENA K, BARTON C, HALL S, et al. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia, United States[J]. Restoration Ecology, 2015, 23(2): 1−8.
[43] CARABASSA V, SERRA E, ORTIZ O, et al. Sewage sludge application protocol for quarry restoration(Catalonia)[J]. Ecological Restoration, 2010, 28(4): 420−422. doi: 10.3368/er.28.4.420
[44] 胡振琪, 康惊涛, 魏秀菊, 等. 煤基混合物对复垦土壤的改良及苜蓿增产效果[J]. 农业工程学报, 2007, 23(11): 120−124.
HU Z Q, KANG J T, WEI X J, et al. Effect of coal−based mixture on soil improvement and alfalfa yield increase[J]. Transactions of the CSAE, 2007, 23(11): 120−124.
[45] 周昊, 郭娇娇, 何绪文, 等. 煤矿区固废改良土壤对植物生长的影响[J]. 煤炭技术, 2018, 37(3): 23−25.
ZHOU H, GUO J J, HE X W, et al. Research on impact of coal solid waste improved soil on plant growth[J]. Coal Technology, 2018, 37(3): 23−25.
[46] 钟仁华, 蔡红春, 李威, 等. 一种煤矸石提取腐植酸的方法: CN111662463A[P]. 2020−09−15.
ZHONG R H, CAI H C, LI W, et al. A method for extracting humic acid from coal gangue: CN111662463A[P]. 2020−09−15.
[47] 吴伟辰. 一种利用煤矸石制备腐殖酸肥的方法: CN115353422A[P]. 2022−11−18.
WU W C. The invention relates to a method for preparing humic acid fertilizer by using coal gangue: CN115353422A[P]. 2022−11−18.
[48] 许旭旦. 黄腐酸(FA)研究的意义与成就[J]. 腐植酸, 1996(1): 32−34.
XU X D. Significance and achievements of fulvic acid (FA) research[J]. Humic Acid, 1996(1): 32−34.
[49] 刘信平, 吴少尉, 张驰. 富硒煤矸石活化技术及煤矸石硒肥高效利用研究[J]. 植物营养与肥料学报, 2020, 26(8): 1526−1535.
LIU X P, WU S W, ZHANG C. Activation of Se−enriched coal gangue and the efficient use of coal gangue Se fertilizer[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(8): 1526−1535.
[50] BLAGODATSKAYAL E, KUZYAKOV Y. Active microorganisms in soil: critical review of estimation criteria and approaches[J]. Soil Biology&Biochemistry, 2013, 67: 192−211.
[51] 钟艳, 杨艳梅, 谢承卫. 利用巨大芽孢杆菌处理高硫和低硫煤矸石制备肥料的研究[J]. 贵州师范学院学报, 2015, 31(12): 18−25.
ZHONG Y, YANG Y M, XIE C W. Study on the preparation of high−sulfur and low−sulfur coal gangue fertilizers by bacillus megaterium[J]. Journal of Guizhou Education University, 2015, 31(12): 18−25.
[52] 袁向芬, 谢承卫. 利用巨大芽孢杆菌制备高硫煤矸石肥料[J]. 环境工程学报, 2015, 9(2): 946−950.
YUAN X F, XIE C W. Preparation of high−sulfur coal gangue fertilizer by bacillus megaterium[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 946−950.
[53] 贾倩倩, 程帆, 谢承卫. 利用硅酸盐细菌(GY03)制备煤矸石肥料的研究[J]. 粉煤灰综合利用, 2012(2): 28−31.
JIA Q Q, CHENG F, XIE C W. Study on the preparation of coal gangue fertilizer by silicate bacteria(GY03)[J]. Fly Ash Comprehensive Utilization, 2012(2): 28−31.
[54] 程蓉, 廖祥文, 舒荣波, 等. 利用硅酸盐细菌制备煤矸石矿物肥料[J]. 矿产综合利用, 2017(6): 115−118. doi: 10.3969/j.issn.1000-6532.2017.06.025
CHENG R, LIAO X W, SHU R B, et al. Preparation of mineral fertilizer for coal gangue by silicate bacteria[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 115−118. doi: 10.3969/j.issn.1000-6532.2017.06.025
[55] 杨辉. 基于硅溶胶的多孔保温材料制备及性能研究[D]. 成都: 西南交通大学, 2016.
YANG H. Preparation and properties of porous thermal insulation materials based on silica sol[D]. Chendu: Southwest Jiaotong University, 2016.
[56] 臧晔, 王晓丽, 王思阳. 乌海地区煤矸石制备LSX型沸石[J]. 中国粉体技术, 2019, 25(2): 37−41.
ZANG Y, WANG X L, WANG S Y. Preparation of LSX zeolite from coal gangue in Wuhai area[J]. China Powder Science and Technology, 2019, 25(2): 37−41.
[57] ANANYEVA K, WANG W, SMUCKERA J M, et al. Can intra−aggregate pore structures affect the aggregate’s effectiveness in protecting carbon[J]. Soil Biology&Biochemistry, 2013, 57: 868−875.
[58] 陈敏. 矸石基磁性多孔材料的制备及其修复镉砷污染土壤机理[D]. 淮南: 安徽理工大学, 2022.
CHEN M. Preparation of magnetic porous materials based on gangue and mechanism of remediation of cadmium−arsenic contaminated soil[D]. Huainan: Anhui University of Science& Technology, 2022.
[59] 苏迪. 煤矸石基人造土壤制备工艺及性能研究[D]. 太原: 山西大学, 2021.
SU D. Study on preparation technology and properties of artificial soil based on coal gangue[D]. Taiyuan: Shanxi University, 2021.
[60] 温军, 王晓丽, 王彦龙. 长江源区3种地形高寒草地土壤阳离子交换量和交换性盐基离子的分布特征及其机理探讨[J]. 生态环境学报, 2019, 28(3): 488−497.
WEN J, WANG X L, WANG Y L. Distribution characteristics and mechanism discussion of soil cation exchange capacity and exchangeable based cations of alpine grassland in the source region of Yangtze River[J]. Ecology and Environmental Sciences, 2019, 28(3): 488−497.
[61] 于耀泓, 刘悦, 王艺颖, 等. 鹅凰嶂山地雨林土壤阳离子交换量和交换性盐基离子分布特征[J]. 土壤通报, 2022, 53(6): 1341−1349.
YU Y H, LIU Y, WANG Y Y, et al. Distribution of soil cation exchange capacity and exchangeable based cations in the E’huangzhang montane rain forest[J]. Chinese Journal of Soil Science, 2022, 53(6): 1341−1349.
[62] 吴圣杰. 基于工业副产物的多孔土壤基质制备及性能研究[D]. 太原: 山西大学, 2022.
WU S J. Preparation and properties of porous soil matrix based on industrial by−products[D]. Taiyuan: Shanxi University, 2022.
[63] 崔树军, 阎云明. 煤矸石的地球化学特征及农业利用前景[J]. 中州煤炭, 1999(1): 30−30.
CUI S J, YAN Y M. Geochemical characteristics and agricultural utilization prospects of coal gangue[J]. Zhongzhou Coal, 1999(1): 30−30.
[64] 张伟才, 杨桂荣. 用煤矸石制西瓜、苹果专用肥料的试验研究[J]. 煤矿环境保护, 1997(3): 24−26.
ZHANG W C, YANG G R. Experimental study on special fertilizer for watermelon and apple made from coal gangue[J]. Coal Mine Environmental Protection, 1997(3): 24−26.
[65] 吕珊兰, 武冬梅, 冯两蕊, 等. 覆盖煤矸石风化物上施肥种植红豆草效果的研究[J]. 煤矿环境保护, 1996(2): 32−35.
LV S L, WU D M, FENG L R, et al. Study on the effect of planting red bean grass with fertilizer on coal gangue weathering[J]. Coal Mine Environmental Protection, 1996(2): 32−35.
[66] 刘莹, 李亚兵. 利用煤矸石和蚯蚓粪进行棉花工厂化育苗的研究[J]. 中国棉花, 2014, 41(8): 23−25.
LIU Y, LI Y B. The Study on cotton seeding in the substrate used by gangue and vermicompost[J]. Chinese Cotton, 2014, 41(8): 23−25.
[67] 何俊瑜, 任艳芳, 温祥珍, 等. 煤矸石为基质的育苗试验[J]. 山西农业大学学报(自然科学版), 2004, 24(1): 56−59.
HE J Y, REN Y F, WEN X Z, et al. Study on the gangue as a seedling substrate[J]. Journal of Shanxi Agricultural University, 2004, 24(1): 56−59.
[68] 柯凯恩, 董晓芸, 周金星, 等. 煤矸石生态基质的制备配方及其肥力特征研究[J]. 中国土壤与肥料, 2021(4): 308−317.
KE K E, DONG X Y, ZHOU J X, et al. Study on preparation formula and fertility characteristics of coal gangue ecological matrix[J]. Chinese Soil and Fertilizer, 2021(4): 308−317.
[69] 袁伟嘉, 易文, 张建. 不同风化程度的煤矸石生态边坡工程技术[J]. 科技与创新, 2022(23): 153−155.
YUAN W J, YI W, ZHANG J. Ecological slope engineering technology of coal gangue with different weathering degree[J]. Technology and Innovation, 2022(23): 153−155.
[70] 赵振雷. 山西省煤矸石生态处置模式研究[J]. 低碳世界, 2017(10): 89−90.
ZHAO Z L. Study on ecological disposal model of coal gangue in Shanxi Province[J]. Low−carbon World, 2017(10): 89−90.
[71] 周金星, 柯凯恩, 乔浩亮, 等. 一种基于煤矸石的人工生态基质及其制备方法: CN1 10999753B[P]. 21−07−27.
ZHOU J X, KE K E, QIAO H L, et al. The invention relates to an artificial ecological substrate based on coal gangue and a preparation method thereof: CN1 10999753B[P]. 2021−07−27.
[72] 周金星, 秦琪焜, 乔浩亮, 等. 一种基于煤矸石和污泥的生态改良基质制备方法: CN 111011159B[P]. 2021−11−05.
ZHOU J X, QIN Q K, QIAO H L, et al. The invention relates to an ecologically improved substrate preparation method based on coal gangue and sludge: CN 111011159B[P]. 2021−11−05.
[73] 韩彦明, 郭玉玮, 范利国, 等. 生活污泥一分钟制营养土的方法: CN202211 538619.9[P]. 2023−07−24.
GUO Y M, GUO Y W, FAN L G, et al. The method of making nutritive soil from domestic sludge in one minute: CN202211538619.9[P]. 2023−07−24.
[74] 肖作义, 白昕冉, 郑春丽, 等. 微生物矿物源土壤修复剂配施效果的研究[J]. 有色金属工程, 2020, 10(1): 120−126. doi: 10.3969/j.issn.2095-1744.2020.01.017
XIAO Z Y, BAI X R, ZHENG C L, et al. Application affect of microbial mineral source soil remediation agent[J]. Nonferrous Metals Engineering, 2020, 10(1): 120−126. doi: 10.3969/j.issn.2095-1744.2020.01.017
[75] 张肖萌, 郭巧玲, 杨云松, 等. 煤炭矿区排矸场表层土壤重金属污染研究[J]. 有色金属(冶炼部分), 2023, 10(2): 149−157.
ZHANG X M, GUO Q L, YANG Y S, et al. Study on heavy metal pollution in topsoil of gangue field in coal mining area[J]. Non−ferrous Metal, 2023, 10(2): 149−157.
[76] 沈智杰. 某煤矸石堆积区周边耕地土壤重金属污染评价及来源解析[D]. 重庆: 西南大学, 2023.
SHEN Z J. Evaluation and source apportionment of heavy metal pollution in cultivated soil around a coal gangue accumulation area[D]. Chongqing: Southwest University, 2023.
-