尾矿制备相变材料研究进展

李柯, 李健, 邵艳秋, 李静, 张伟屹, 邵莹莹, 张涛, 田超, 马近伟, 李书慧, 朱英. 尾矿制备相变材料研究进展[J]. 矿产保护与利用, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007
引用本文: 李柯, 李健, 邵艳秋, 李静, 张伟屹, 邵莹莹, 张涛, 田超, 马近伟, 李书慧, 朱英. 尾矿制备相变材料研究进展[J]. 矿产保护与利用, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007
LI Ke, LI Jian, SHAO Yanqiu, LI Jing, ZHANG Weiyi, SHAO Yingying, ZHANG Tao, TIAN Chao, MA Jinwei, LI Shuhui, ZHU Ying. Research Progress on Tailings−based Composite Phase Change Materials[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007
Citation: LI Ke, LI Jian, SHAO Yanqiu, LI Jing, ZHANG Weiyi, SHAO Yingying, ZHANG Tao, TIAN Chao, MA Jinwei, LI Shuhui, ZHU Ying. Research Progress on Tailings−based Composite Phase Change Materials[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007

尾矿制备相变材料研究进展

  • 基金项目: 国家自然科学基金青年科学基金项目(52204422);济南市社会民生专项(202221015);济南市“新高校20条”创业计划项目(2021GXRC124);山东省科技型中小企业创新能力提升项目(2022TSGC1084);山东省科技型中小企业创新能力提升工程(2023TSGC0533)
详细信息
    作者简介: 李柯(1998—),女,山东滨州人,硕士研究生,研究方向为固体废物处理及资源化,E-mail:10431221203@stu.qlu.edu.cn
    通讯作者: 张伟屹(1993—),男,山东泰安人,副研究员,硕士生导师,主要从事非金属矿物资源及工业固体废弃物的高效利用研究,E-mail:zhangweiyi@sdas.org
  • 中图分类号: TD926.4+2

Research Progress on Tailings−based Composite Phase Change Materials

More Information
  • 我国尾矿年产量大,目前尾矿的处理方式主要有矿山回填、有价金属回收等,但难以实现尾矿的完全利用。尾矿中含有的大量石英、长石、碳酸盐矿物、硅酸盐矿物和黏土矿物等成分使其具有稳定性好、比面积大、孔隙结构丰富的特点。固−液相变材料(固−液PCMs)潜热大,但相变过程中转变为液相时易发生泄露。利用尾矿来负载固−液PCMs,既能解决其泄露问题,又能为尾矿的资源化利用提供新的途径,减轻生态环境的负担。针对尾矿资源化利用,综述了尾矿的类型及理化特性,尾矿基相变材料的封装制备、热性能提升以及应用。最后,阐述了当前尾矿制备相变材料存在的不足以及对未来研究的展望,以期为相关研究提供参考,促进尾矿在相变储热领域资源化利用的研究。

  • 加载中
  • 图 1  尾矿基FSPCMs的制备过程示意图

    Figure 1. 

    图 2  (a)通过压汞法得到膨胀蛭石(EVM)、酸改性EVA(A−EVM)和酸改性有机插层EVA(A−O−EVM)的孔隙参数[56];(b)膨胀石墨(EG)和改性膨胀石墨(MEG)对PCMs的静态吸附曲线[57]

    Figure 2. 

    图 3  PEG(聚乙二醇)、PEG/Dt(聚乙二醇、硅藻土)、PEG/DCP(聚乙二醇、硅藻土、碳纳米颗粒)和PEG/DCN(聚乙二醇、硅藻土、单壁碳纳米管)复合材料的导热系数[68]

    Figure 3. 

    图 4  (a) 未添加和添加纳米Ag复合相变材料的热导率[70]; (b) 不同氧化钛复合相变材料热导率[72]

    Figure 4. 

    表 1  典型尾矿的主要组分及其质量分数

    Table 1.  Main components of typical tailings and their mass fractions /%

    尾矿SiO2Al2O3Fe2O3CaOMgO
    铁尾矿[21]58.8717.467.495.219.72
    铜尾矿[22]59.2714.286.462.963.65
    磷尾矿[23]3.210.150.2033.0216.97
    石墨尾矿[24]62.5010.215.0715.552.33
    黄金尾矿[25]68.2110.922.092.173.20
    高岭土尾矿[26]82.8612.041.140.090.06
    下载: 导出CSV

    表 2  尾矿基FSPCMs的封装技术

    Table 2.  Encapsulation technology for tailings−based FSPCMs

    技术封装原理
    分层封装矿物与PCMs纳米层间分子间微观作用力固定PCMs(如氢键力、范德华力等)
    管状封装矿物管状内腔以及微观作用力固定PCMs
    多孔封装多孔矿物丰富的孔隙以及微观作用力固定PCMs
    核壳封装矿物形成的核壳结构包裹固定PCMs
    网络封装由矿物构建的网状结构固定PCMs
    下载: 导出CSV

    表 3  提高FSPCMs潜热的常用技术及其特征

    Table 3.  Commonly used techniques to enhance the latent heat of FSPCMs and their characteristics

    技术原理优点缺点
    有机插层处理[52]增大尾矿矿物层间距工艺较简单,具有长期稳定性可能造成环境污染
    亲水改性处理[53]引入新的官能团提高矿物对PCMs的负载力工艺适中,稳定性好可能造成环境污染
    功能性材料添加[54] (成孔剂)调整改善尾矿孔隙结构工艺简单,长期稳定性好能耗高
    功能性材料添加[55] (纳米材料)丰富尾矿内部结构工艺简单成本高;易团聚
    下载: 导出CSV

    表 4  常用高导热材料优缺点

    Table 4.  Advantages and disadvantages of commonly used high thermal conductivity materials

    类别材料名称导热系数 /(W·m−1·K−1)优点缺点
    碳基材料碳纳米管[57]3000~6000密度低;大比表面积;分子间作用力大;结构稳定性好;耐腐蚀性强;易获得易团聚;分散稳定性较差;制备工艺复杂;相容性较差
    石墨[58]1100
    石墨烯[59]3000~5000
    金属材料铜(Cu)[60]400较大的比表面积和体积比;易于控制;导热系数高密度高;耐腐蚀性低;
    热稳定性差
    银(Ag)[61]429
    铝(Al)[62]237
    金属氧化物二氧化钛(TiO2)[63]8.4生物相容性高;较好的化学稳定性;成本低,制备工艺简单与其他两种材料相比,有较低的导热系数
    氧化铝(Al2O3)[64]41.1
    四氧化三铁(Fe3O4)[65]9.7
    碳化硅(SiC)[66]120
    下载: 导出CSV
  • [1]

    ZHANG Y, LIU J, SU Z, et al. Preparation of low−temperature composite phase change materials (C−PCMs) from modified blast furnace slag (MBFS)[J]. Construction and Building Materials, 2020, 238: 117717. doi: 10.1016/j.conbuildmat.2019.117717

    [2]

    TANG B, WEI H, ZHAO D, et al. Light−heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping[J]. Solar Energy Materials and Solar Cells, 2017, 161: 183−189. doi: 10.1016/j.solmat.2016.12.003

    [3]

    TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245−59. doi: 10.1016/j.rser.2018.05.028

    [4]

    黄港, 邱玮, 黄伟颖, 等. 相变储能材料的研究与发展[J]. 材料科学与工艺, 2022, 30(3): 80−96.

    HUANG G, QIU W, HUANG W Y, et al. Research and development of phase change energy storage materials[J]. Materials Science and Technology, 2022, 30(3): 80−96.

    [5]

    ZHANG Z, ZHANG Z, CHANG T, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in−situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. doi: 10.1016/j.cej.2021.131164

    [6]

    PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67−123. doi: 10.1016/j.pmatsci.2014.03.005

    [7]

    AFTAB W, HUANG X, WU W, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy and Environmental Science, 2018, 11(6): 1392−1424. doi: 10.1039/C7EE03587J

    [8]

    WEI Y, LI J, SUN F, et al. Leakage−proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858−1865. doi: 10.1039/C7GC03595K

    [9]

    RATHORE P K S, SHUKLA S K. Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review[J]. Energy and Buildings, 2021, 236: 110799. doi: 10.1016/j.enbuild.2021.110799

    [10]

    LIU P, GAO H, CHEN X, et al. In situ one−step construction of monolithic silica aerogel−based composite phase change materials for thermal protection[J]. Composites Part B:Engineering, 2020, 195: 108072. doi: 10.1016/j.compositesb.2020.108072

    [11]

    阎赞, 王想, 徐名特, 等. 尾矿资源化研究在铅锌尾矿中的应用[J]. 矿产综合利用, 2017(1): 1−5. doi: 10.3969/j.issn.1000-6532.2017.01.001

    YAN Z, WANG X, XV M T, et al. Utilization situation and development trend of lead and zinc tailing resources[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 1−5. doi: 10.3969/j.issn.1000-6532.2017.01.001

    [12]

    BORTNIKOVA S B, YURKEVICH N V, GASKOVA O L, et al. Arsenic and metal quantities in abandoned arsenide tailings in dissolved, soluble, and volatile forms during 20 years of storage[J]. Chemical Geology, 2021, 586: 120623. doi: 10.1016/j.chemgeo.2021.120623

    [13]

    HU S, XIONG X, LI X, et al. Spatial distribution characteristics, risk assessment and management strategies of tailings ponds in China[J]. Science of The Total Environment, 2024, 912: 169069. doi: 10.1016/j.scitotenv.2023.169069

    [14]

    LV P, LIU C, RAO Z. Review on clay mineral−based form−stable phase change materials: preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707−726. doi: 10.1016/j.rser.2016.10.014

    [15]

    SARI A. Thermal energy storage characteristics of bentonite−based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132−141. doi: 10.1016/j.enconman.2016.02.078

    [16]

    张长青, 李其在, 李德先, 等. 尾矿资源化综合利用应用研究: 以京津冀崇礼矿产资源集中区为例[J]. 中国矿业, 2022, 31(7): 49−60.

    ZHANG C Q, LI Q Z, LI D X, et al, Study on application technology of comprehensive utilization of tailings: taking Chongli Mineral Resources Concentration Area as an example[J]. China Mining Magazine, 2022, 31(7): 49−60.

    [17]

    杜艳强, 段文峰, 赵艳. 金属尾矿处置及资源化利用技术研究[J]. 中国矿业, 2021, 30(8): 57−61.

    DU Y Q, DUAN W F, ZHAO Y. Study on metal mine tailings disposal and resource utilization technology[J]. China Mining Magazine, 2021, 30(8): 57−61.

    [18]

    刘玉林, 刘长淼, 刘红召, 等. 我国矿山尾矿利用技术及开发利用建议[J]. 矿产保护与利用, 2018(6): 140−144.

    LIU Y L, LIU C M, LIU H Z, et al. Utilization technology of mine tailings in China and exploitation suggestions[J]. Conservation and Utilization of Mineral Resources, 2018(6): 140−144.

    [19]

    PEREIRA M J, LIMA M M F, LIMA R M F. Calcination and characterisation studies of a Brazilian manganese ore tailing[J]. International Journal of Mineral Processing, 2014, 131: 26−30. doi: 10.1016/j.minpro.2014.08.003

    [20]

    ZENG L, SUN H, PENG T, et al. Preparation of porous glass−ceramics from coal fly ash and asbestos tailings by high−temperature pore−forming[J]. Waste Management, 2020, 106: 184−192. doi: 10.1016/j.wasman.2020.03.008

    [21]

    耿真真, 李宏岩, 赵飞. 掺铁尾矿蒸压混凝土的性能研究[J]. 矿产综合利用: 2023(7): 1−5.

    GENG Z Z, LI H Y, ZHAO F, et al. Study on the performance of autoclaved concrete with iron tailings admixture[J]. Multipurpose Utilization of Mineral Resources, 2023(7): 1−5.

    [22]

    余海燕, 王梦伟, 石译文. 铜尾矿泡沫陶瓷的组成对坯体性能的影响研究[J]. 天津城建大学学报, 2023, 29(5): 335−340.

    YV H Y, WANG M W, SHI Z W, et al. Influence of composition of copper tailings foam ceramics on body properties[J]. Journal of Tianjin Chengjian University, 2023, 29(5): 335−340.

    [23]

    周雪娜, 关洪亮, 何东升, 等. 磷尾矿综合利用研究进展[J]. 广州化工, 2021, 49(5): 24−27.

    ZHOU X N, GUAN H L, HE D S, et al. Research progress on comprehensive utilization by phosphate tailings[J]. Guangzhou Chemical Industry, 2021, 49(5): 24−27.

    [24]

    李思瑶, 王福彤, 王冠宇, 等. 水泥稳定石墨尾矿的无侧限抗压强度试验[J]. 低温建筑技术, 2023, 45(7): 38−45.

    LI S Y, WANG F T, WANG G Y, et al. Road performance studies of cement stabilized graphite tailings[J]. Low Temperature Architecture Technology, 2023, 45(7): 38−45.

    [25]

    杨会康. 固废基中高温复合相变储热材料的制备及其性能优化研究[D]. 济南: 齐鲁工业大学, 2023.

    YANG H K. Preparation and performance optimization of medium and high temperature composite phase change heat storage materials based on solid waste[D]. Ji’nan: Qilu University of Technology, 2023.

    [26]

    王前, 彭少伟, 卢昊, 等. 高岭土尾矿综合回收选矿试验研究[J]. 陶瓷, 2021(8): 59−62.

    WANG Q, PENG S W, LU H, et al. Experimental study on comprehensive recovery and beneficiation of kaolin tailings[J]. Ceramics, 2021(8): 59−62.

    [27]

    LIU T, TANG Y, HAN L, et al. Recycling of harmful waste lead−zinc mine tailings and fly ash for preparation of inorganic porous ceramics[J]. Ceramics International, 2017, 43(6): 4910−4918. doi: 10.1016/j.ceramint.2016.12.142

    [28]

    ZHANG Y, ZHANG J, WU L, et al. Extraction of lithium and aluminum from bauxite mine tailings by mixed acid treatment without roasting[J]. Journal of Hazardous Materials, 2021, 404: 124044. doi: 10.1016/j.jhazmat.2020.124044

    [29]

    XIE M, LIU F, ZHAO H, et al. Mineral phase transformation in coal gangue by high temperature calcination and high−efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281−2288. doi: 10.1016/j.jmrt.2021.07.129

    [30]

    ZHANG X, ZHANG H, LIANG Q, et al. Resource utilization of solid waste in the field of phase change thermal energy storage[J]. Journal of Energy Storage, 2023, 58: 106362. doi: 10.1016/j.est.2022.106362

    [31]

    WEI H, XIE X, LI X, et al. Preparation and characterization of capric−myristic−stearic acid eutectic mixture/modified expanded vermiculite composite as a form−stable phase change material[J]. Applied Energy, 2016, 178: 616−623. doi: 10.1016/j.apenergy.2016.06.109

    [32]

    ZHANG M, CHENG H, WANG C, et al. Kaolinite nanotube−stearic acid composite as a form−stable phase change material for thermal energy storage[J]. Applied Clay Science, 2021, 201: 105930. doi: 10.1016/j.clay.2020.105930

    [33]

    THANAKKASARANEE S, SEO J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol−based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 132: 154−161. doi: 10.1016/j.ijheatmasstransfer.2018.11.160

    [34]

    MIAO W, GAN S, LI X, et al. A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage[J]. Applied Clay Science, 2020, 189: 105530. doi: 10.1016/j.clay.2020.105530

    [35]

    YANG Y, PANG Y, LIU Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form−stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216: 220−223. doi: 10.1016/j.matlet.2018.01.025

    [36]

    SARı A, BICER A, AL−SULAIMAN F A, et al. Diatomite/CNTs/PEG composite PCMs with shape−stabilized and improved thermal conductivity: Preparation and thermal energy storage properties[J]. Energy and Buildings, 2018, 164: 166−175. doi: 10.1016/j.enbuild.2018.01.009

    [37]

    SU W, DARKWA J, KOKOGIANNAKIS G. Review of solid−liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373−391. doi: 10.1016/j.rser.2015.04.044

    [38]

    WANG Y, SONG Y, LI S, et al. Thermophysical properties of three−dimensional palygorskite based composite phase change materials[J]. Applied Clay Science, 2020, 184: 105367. doi: 10.1016/j.clay.2019.105367

    [39]

    YI H, AI Z, ZHAO Y, et al. Design of 3D−network montmorillonite nanosheet/stearic acid shape−stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. doi: 10.1016/j.solmat.2019.110233

    [40]

    AZIZ A, STOCKER O, EL AMRANI EL HASSANI I E, et al. Effect of blast−furnace slag on physicochemical properties of pozzolan−based geopolymers[J]. Materials Chemistry and Physics, 2021, 258: 123880. doi: 10.1016/j.matchemphys.2020.123880

    [41]

    EDRAKI M, BAUMGARTL T, MANLAPIG E, et al. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches[J]. Journal of Cleaner Production, 2014, 84(1): 411−420.

    [42]

    CHEN Y, ZHANG Y, CHEN T, et al. Preparation of eco−friendly construction bricks from hematite tailings[J]. Construction and Building Materials, 2011, 25(4): 2107−2111. doi: 10.1016/j.conbuildmat.2010.11.025

    [43]

    DAS S K, KUMAR S, RAMACHANDRARAO P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Management, 2000, 20(8): 725−729. doi: 10.1016/S0956-053X(00)00034-9

    [44]

    AHMARI S, ZHANG L. Production of eco−friendly bricks from copper mine tailings through geopolymerization[J]. Construction and Building Materials, 2012, 29: 323−331. doi: 10.1016/j.conbuildmat.2011.10.048

    [45]

    蒋骞, 潘大伟, 艾天, 等. 铁尾矿与采剥废石基多孔陶瓷复合相变储能材料的制备与表征[J]. 化工矿物与加工, 2023, 52(5): 24−31.

    JIANG Q, PAN D W, AI T, et al. Reparation and characterization of porous ceramic matrix for composite phase change energy storage materials using iron tailings and mining−stripping waste rock[J]. Industrial Minerals & Processing, 2023, 52(5): 24−31.

    [46]

    LI R, ZHOU Y, DUAN X. A novel composite phase change material with paraffin wax in tailings porous ceramics[J]. Applied Thermal Engineering, 2019, 151: 115−123. doi: 10.1016/j.applthermaleng.2019.01.104

    [47]

    HUANG Y, HU N, YE Y, et al. Preparation and pore−forming mechanism of MgO−Al2O3–CaO−based porous ceramics using phosphorus tailings[J]. Ceramics International, 2022, 48(20): 29882−29891. doi: 10.1016/j.ceramint.2022.06.253

    [48]

    ZHANG J, ZHANG X, WAN Y, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form−stable phase change material[J]. Solar Energy, 2012, 86(5): 1142−1148. doi: 10.1016/j.solener.2012.01.002

    [49]

    FU W, ZOU T, LIANG X, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618−626. doi: 10.1016/j.applthermaleng.2018.04.102

    [50]

    LI D, CHENG X, LI Y, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142−149. doi: 10.1016/j.solener.2018.06.062

    [51]

    DONG K, GU X, PENG L, et al. Recent advancements in typical mineral−encapsulated form−stable phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 104931. doi: 10.1016/j.est.2022.104931

    [52]

    LIU S, YANG H. Composite of coal−series kaolinite and capric−lauric acid as form−stable phase−change material[J]. Energy Technology, 2015, 3(1): 77−83. doi: 10.1002/ente.201402125

    [53]

    ZHOU Y, SUN W, LING Z, et al. Hydrophilic modification of expanded graphite to prepare a high−performance composite phase change block containing a hydrate salt[J]. Industrial and Engineering Chemistry Research, 2017, 56(50): 14799−14806. doi: 10.1021/acs.iecr.7b03986

    [54]

    JIANG F, GE Z, LING X, et al. Improved thermophysical properties of shape−stabilized NaNO3 using a modified diatomite−based porous ceramic for solar thermal energy storage[J]. Renewable Energy, 2021, 179: 327−338. doi: 10.1016/j.renene.2021.07.023

    [55]

    REN S, LI J, HUANG K, et al. Effect of composite orders of graphene oxide on thermal properties of Na2HPO4•12H2O/expanded vermiculite composite phase change materials[J]. Journal of Energy Storage, 2021, 41: 102980. doi: 10.1016/j.est.2021.102980

    [56]

    YANG Z, LI J, LUAN X, et al. Effects of acid leaching and organic intercalation on the thermophysical properties of paraffin/expanded vermiculite composite phase change materials[J]. Applied Clay Science, 2020, 196: 105754. doi: 10.1016/j.clay.2020.105754

    [57]

    CHENG J, NIU S, KANG M, et al. The thermal behavior and flame−retardant performance of phase change material microcapsules with modified carbon nanotubes[J]. Energy, 2022, 240: 122821. doi: 10.1016/j.energy.2021.122821

    [58]

    胡勇, 杨浩坤, 邓君, 等. 高导热低热膨胀Al−20%Si/石墨片复合材料的制备与性能研究[J]. 东莞理工学院学报, 2021, 28(1): 118−122.

    HU Y, YANG H K, DENG J, et al. Preparation and properties of Al−20% Si/Graphite flake with high thermal conductivity and low thermal expansion[J]. Journal of Dongguan University of Technology, 2021, 28(1): 118−122.

    [59]

    PARK S S, KIM N J. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1911−1915. doi: 10.1016/j.jiec.2013.09.011

    [60]

    LV P, DING M, LIU C, et al. Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage[J]. Renewable Energy, 2019, 131: 911−922. doi: 10.1016/j.renene.2018.07.102

    [61]

    LU Z, XU B, ZHANG J, et al. Preparation and characterization of expanded perlite/paraffin composite as form−stable phase change material[J]. Solar Energy, 2014, 108: 460−466. doi: 10.1016/j.solener.2014.08.008

    [62]

    WANG H, DENG Y, WU F, et al. Effect of dopamine−modified expanded vermiculite on phase change behavior and heat storage characteristic of polyethylene glycol[J]. Chemical Engineering Journal, 2021, 415: 128992. doi: 10.1016/j.cej.2021.128992

    [63]

    CHIU C W, HUANG T K, WANG Y C, et al. Intercalation strategies in clay/polymer hybrids[J]. Progress in Polymer Science, 2014, 39(3): 443−485. doi: 10.1016/j.progpolymsci.2013.07.002

    [64]

    BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945−951. doi: 10.1016/j.applthermaleng.2015.07.083

    [65]

    ŞAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials − A study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61−67. doi: 10.1016/j.solmat.2015.01.027

    [66]

    ZHU Y, SHEN X, BAO D, et al. Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J]. Journal of Polymer Research, 2021, 28: 1−10. doi: 10.1007/s10965-020-02155-9

    [67]

    HAN L, ZHANG X, JI J, et al. Research progress on the influence of nano−additives on phase change materials[J]. Journal of Energy Storage, 2022, 55: 105807. doi: 10.1016/j.est.2022.105807

    [68]

    QIAN T, ZHU S, WANG H, et al. Comparative study of carbon nanoparticles and single−walled carbon nanotube for light−heat conversion and thermal conductivity enhancement of the multifunctional PEG/Diatomite composite phase change material[J]. ACS Applied Materials and Interfaces, 2019, 11(33): 29698−29707. doi: 10.1021/acsami.9b04349

    [69]

    XU S, ZHANG X, HUANG Z, et al. Thermal conductivity enhanced polyethylene glycol/expanded perlite shape−stabilized composite phase change materials with Cu powder for thermal energy storage[J]. Materials Research Express, 2018, 5(9): 095503. doi: 10.1088/2053-1591/aad5c0

    [70]

    ZHAN W, ZHAO Y, YUAN Y, et al. Development of 2D−Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110090. doi: 10.1016/j.solmat.2019.110090

    [71]

    DENG Y, LI J, NIAN H, et al. Design and preparation of shape−stabilized composite phase change material with high thermal reliability via encapsulating polyethylene glycol into flower−like TiO2 nanostructure for thermal energy storage[J]. Applied Thermal Engineering, 2017, 114: 328−336. doi: 10.1016/j.applthermaleng.2016.11.082

    [72]

    HASBI S, NORAZMAN N, SAHARUDIN M S. Effects of titanium oxide and graphene as nano−fillers on the thermal conductivity of biobased phase change materials as latent thermal heat storage[J]. Materials Today:Proceedings, 2023, 75: 181−187. doi: 10.1016/j.matpr.2022.11.426

    [73]

    WANG H, LI Y, YIN B, et al. Synthesis of cordierite foam ceramics from kyanite tailings and simulated application effects[J]. Materials Today Communications, 2022, 33: 104510. doi: 10.1016/j.mtcomm.2022.104510

    [74]

    GAO H, LIU H, LIAO L, et al. A novel inorganic thermal insulation material utilizing perlite tailings[J]. Energy and Buildings, 2019, 190: 25−33. doi: 10.1016/j.enbuild.2019.02.031

    [75]

    王鹏昕. 微纳铁尾矿砂/SiO2气凝胶保温隔热建筑新材料的制备及其参数影响规律[D]. 南昌: 南昌航空大学, 2022.

    WANG P X. Preparation of new material for micro−nano iron tailing Sand/SiO2 aerogel thermal insulation building and laws of parameter influence[D]. Nanchang: Nanchang Hangkong University, 2022.

    [76]

    DU Y, CHEN J, HAN Z, et al. A review on solutions for improving rutting resistance of asphalt pavement and test methods[J]. Construction and Building Materials, 2018, 168: 893−905. doi: 10.1016/j.conbuildmat.2018.02.151

    [77]

    ZHANG D, CHEN M, WU S, et al. Preparation of expanded graphite/polyethylene glycol composite phase change material for thermoregulation of asphalt binder[J]. Construction and Building Materials, 2018, 169: 513−521. doi: 10.1016/j.conbuildmat.2018.02.167

    [78]

    刘溢. 利用石墨尾矿制备太阳能储热陶瓷的研究[D]. 武汉: 武汉理工大学, 2018.

    LIU Y. Study of the thermal storage ceramic from graphite tailings[D]. Wuhan: Wuhan University of Technology, 2018.

    [79]

    吴建锋, 葛海鹏, 徐晓虹, 等. 用铁尾矿制备太阳能陶瓷蓄热材料的研究[C]//中国硅酸盐学会陶瓷分会, 山东省淄博市科技局, 山东硅元新型材料有限责任公司, 武汉理工大学硅酸盐建筑材料国家重点实验室, 2015.

    WU J F, GE H P, XV X H, et al. Study and preparation of ceramic thermal storage material from iron tailings for solar thermal power generation[C]∥Advanced ceramics branch of the chinese ceramic society, Zibo Science and Technology Bureau, Shandong Province, Shandong Guiyuan Advanced Ceramics Co., Ltd, State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, 2015.

    [80]

    GUELPA E, VERDA V. Thermal energy storage in district heating and cooling systems: a review[J]. Applied Energy, 2019, 252: 113474. doi: 10.1016/j.apenergy.2019.113474

    [81]

    SUN W, LIANG G, FENG F, et al. Study on sodium acetate trihydrate−expand graphite−carbon nanotubes composite phase change materials with enhanced thermal conductivity for waste heat recovery[J]. Journal of Energy Storage, 2022, 55: 105857. doi: 10.1016/j.est.2022.105857

    [82]

    CHAI Z, CHEN X, FANG M, et al. Fabrication and properties of high−thermal−storage RTO ceramics using bauxite tailings and red mud[J]. Ceramics International, 2023, 49(19): 31342−31350. doi: 10.1016/j.ceramint.2023.07.082

  • 加载中

(4)

(4)

计量
  • 文章访问数:  431
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2023-11-10
刊出日期:  2023-12-25

目录