Preparation and Properties of Phase Change Energy Storage Materials with Gold Tailings/Fly Ash
-
摘要:
尾矿是一种错位资源,其综合利用受到广泛关注。一些尾矿具有丰富的孔隙结构和较大的比表面积,可以作为相变储能材料的载体,应用于相变储能领域。以黄金尾矿混合粉煤灰作为基础骨架材料,太阳盐作为相变储能材料,采用冷压缩热烧结法制备了相变储能材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热法(DSC)和激光导热仪(LFA)表征了相变储能材料的热物理性能、化学相容性、导热性能。结果表明,当黄金尾矿含量为22.5%、粉煤灰含量为22.5%、太阳盐含量为55%时,复合材料各方面性能最佳且具有良好的化学相容性,最大潜热为53.81 J/g,导热系数为0.27 W/(m·K),抗压强度达到33.7 MPa。样品在经过100次热循环后,仍具有优异的储热性能。利用尾矿制备相变储能材料具有良好的可行性,为尾矿资源化利用提供了一种新途径。
Abstract:Tailings is a type of misaligned resource that has received widespread attention for comprehensive utilization. Tailings can serve as carriers for phase change materials (PCMs) in thermal energy storage applications with rich pore structures and relatively large specific surface areas. In this study, a novel composite phase change material (CPCM) was prepared by a hybrid sintering method to combine gold tailings−fly ash mixture as the base material with solar salt as the phase change material for thermal energy storage. The chemical compatibility of the CPCM analyzed by X−Ray Diffraction (XRD). And the micro−structure, thermal conductivity performance of the CPCM were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimeter (DSC) and Laser Flash Analysis (LFA). The results showed that when the content of gold tailings was 22.5%, fly ash was 22.5% and solar salt was 55%, the composite has the best properties and good chemical compatibility. Furthermore, the maximum latent heat of the CPCM was 53.8 J/g, its thermal conductivity was 0.27 W/(m·K), and reached a mechanical strength of 33.7 MPa. Critically, the CPCM specimens had good cycling reliability after 100 thermal cycles. In conclusion, the utilization of tailings to prepare phase change energy storage materials was considered to be feasible and provided a new avenue for the resource utilization of tailings.
-
-
表 1 黄金尾矿与粉煤灰主要化学成分
Table 1. Main chemical compositions of gold tailings and fly ash
/% 组分 SiO2 Al2O3 Na2O K2O Fe2O3 CaO MgO LOI 黄金尾矿 69.85 12.68 3.06 4.61 1.96 1.53 1.17 5.02 粉煤灰 56.72 21.55 1.03 1.17 7.69 5.32 1.72 2.96 表 2 不同质量比的相变储能材料
Table 2. Phase change energy storage materials with different mass ratios
/% 样品 复合材料 FG1 FG2 FG3 FG4 FG5 FG6 太阳盐 35 40 45 50 55 60 混合尾矿 65 60 55 50 45 40 表 3 不同样品的熔点和潜热
Table 3. Melting point and latent heat of different samples
样品 熔化温度/℃ 峰值温度/℃ 冻结温度/℃ 潜热/(J·g−1) SS 223.73 229.33 238.82 111.70 FG1 208.89 220.98 238.96 32.85 FG2 213.81 223.20 242.62 38.29 FG3 215.23 224.01 245.34 43.83 FG4 216.02 223.85 247.01 48.96 FG5 217.34 224.48 238.45 53.81 FG5循环后 217.24 224.46 237.13 51.06 表 4 本文制备复合相变储能材料与文献报道的复合材料的性能比较
Table 4. Comparison of the properties of composite phase change energy storage materials prepared in this paper with composites reported in the literature
-
[1] ZHANG X, ZHANG H, LIANG Q, et al. Resource utilization of solid waste in the field of phase change thermal energy storage[J]. Journal of Energy Storage, 2023, 58: 106362. doi: 10.1016/j.est.2022.106362
[2] KENISARIN M M. High−temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955−970. doi: 10.1016/j.rser.2009.11.011
[3] LIU Y, JIANG Z, ZHANG X, et al. Steel slag−KNO3 phase change composites for thermal storage at medium−high temperature and solid waste recycling[J]. Materials Chemistry and Physics, 2023, 301: 127655. doi: 10.1016/j.matchemphys.2023.127655
[4] GUO D, LIU H, ZHANG Y, et al. Waste semi−coke ash for fabrication of form−stable phase change materials for thermal energy storage[J]. Waste and Biomass Valorization, 2022, 14(7): 2419−2432.
[5] 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746−2771.
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746−2771.
[6] 熊亚选, 药晨华, 宋超宇, 等. 低成本兰炭灰骨架定型相变储热材料的制备及性能研究[J]. 华电技术, 2021, 43(7): 62−67.
XIONG Y X, YAO C H, SONG C Y, et al. Preparation and properties of low−cost phase−change heat storage materialsbased on semi−coke ash[J]. Huadian Technology, 2021, 43(7): 62−67.
[7] GONG S, DING Y, LI X, et al. Novel flexible polyurethane/MXene composites with sensitive solar thermal energy storage behavior[J]. Composites Part A:Applied Science and Manufacturing, 2021, 149: 106505. doi: 10.1016/j.compositesa.2021.106505
[8] JIANG F, ZHANG L, SHE X, et al. Skeleton materials for shape−stabilization of high temperature salts based phase change materials: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109539. doi: 10.1016/j.rser.2019.109539
[9] ZHOU Y, WU S, MA Y, et al. Recent advances in organic/composite phase change materials for energy storage[J]. Engineered Science Energy & Environment, 2020(9): 28−40.
[10] ALI S, DESHMUKH S P. An overview: Applications of thermal energy storage using phase change materials[J]. Materials Today:Proceedings, 2020, 26: 1231−1237. doi: 10.1016/j.matpr.2020.02.247
[11] LI M, GUO Q, SU Y. The thermal conductivity improvements of phase change materials using modified carbon nanotubes[J]. Diamond and Related Materials, 2022, 125: 109023. doi: 10.1016/j.diamond.2022.109023
[12] LI R, ZHOU Y, DUAN X. A novel composite phase change material with paraffin wax in tailings porous ceramics[J]. Applied Thermal Engineering, 2019, 151: 115−123. doi: 10.1016/j.applthermaleng.2019.01.104
[13] LI M, GUO Q, NUTT S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage[J]. Solar Energy, 2017, 146: 1−7. doi: 10.1016/j.solener.2017.02.003
[14] ZHENG H, WANG C, LIU Q, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372−381. doi: 10.1016/j.enconman.2017.12.023
[15] LIU Z, HU D, LV H, et al. Mixed mill−heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum−based materials[J]. Applied Thermal Engineering, 2017, 118: 703−713. doi: 10.1016/j.applthermaleng.2017.02.057
[16] 刘鹏, 顾晓滨, 饶俊, 等. 典型固体废弃物制备相变复合材料研究现状及展望[J]. 硅酸盐通报, 2019, 38(2): 380−385.
LIU P, GU X B, RAO J, et al. Development and prospects for preparation of composite phase change materials from typical solid waste[J]. Silicate Bulletin, 2019, 38(2): 380−385.
[17] 蒋骞, 潘大伟, 艾天, 等. 铁尾矿与采剥废石基多孔陶瓷复合相变储能材料的制备与表征[J]. 化工矿物与加工, 2023, 52(5): 24−31.
JIANG Q, PAN D W, AI T, et al. Preparation and characterization of porous ceramic matrix for composite phase change energy storage materials using iron tailing sandmining−stripping waste rock[J]. Chemical Minerals and Processing, 2023, 52(5): 24−31.
[18] 王富国, 陈立萌, 朱孝钦, 等. 基于石墨尾矿的复合相变储能材料的制备与表征[J]. 化工矿物与加工, 2018, 47(2): 23−27.
WANG F G, CHEN L M, ZHU X Q, et al. Preparation and characterization of composite phase change energy storage materials based on graphite tailings[J]. Chemical Minerals and Processing, 2018, 47(2): 23−27.
[19] 杨会康. 固废基中高温复合相变储热材料的制备及其性能优化研究[D]. 济南: 齐鲁工业大学, 2023.
YANG H K. Preparation and performance optimization of medium and high temperature composite phase change heat storage materials based on solid waste[D]. Ji’nan: Qilu University of Technology, 2023.
[20] WANG T, ZHANG T, XU G, et al. A new low−cost high−temperature shape−stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328. doi: 10.1016/j.solmat.2019.110328
[21] ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud−molten salt composites for medium−high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials, 2021, 413: 125407. doi: 10.1016/j.jhazmat.2021.125407
[22] YANG H, ZHANG W, ZHU Y, et al. Preparation and characterisation of sodium nitrate/stone−sawing mud shape−stabilized phase change materials for medium−high temperature thermal energy storage[J]. Journal of Energy Storage, 2022, 56: 106047. doi: 10.1016/j.est.2022.106047
[23] QIN Y, LENG G, YU X, et al. Sodium sulfate−diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37−42. doi: 10.1016/j.powtec.2014.08.075
[24] GUO Q, WANG T. Study on preparation and thermal properties of sodium nitrate/silica composite as shape−stabilized phase change material[J]. Thermochimica Acta, 2015, 613: 66−70. doi: 10.1016/j.tca.2015.05.023
[25] XIONG Y, WANG H, WU Y, et al. Carbide slag based shape−stable phase change materials for waste recycling and thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104256. doi: 10.1016/j.est.2022.104256
[26] XU G, LENG G, YANG C, et al. Sodium nitrate−Diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494−502. doi: 10.1016/j.solener.2017.03.003
[27] WANG X, ZHANG W, SHAO Y, et al. Gold tailings−solar salt shape−stabilized phase change materials for medium−high temperature thermal energy storage[J]. Journal of Energy Storage, 2024, 76: 109810. doi: 10.1016/j.est.2023.109810
-