复配煤基费托合成油与传统烃类油浮选低阶煤泥的对比研究

郭凯, 张国富, 张国华, 郭舟, 李维超, 刘文刚. 复配煤基费托合成油与传统烃类油浮选低阶煤泥的对比研究[J]. 矿产保护与利用, 2023, 43(6): 95-99. doi: 10.13779/j.cnki.issn1001-0076.2023.06.011
引用本文: 郭凯, 张国富, 张国华, 郭舟, 李维超, 刘文刚. 复配煤基费托合成油与传统烃类油浮选低阶煤泥的对比研究[J]. 矿产保护与利用, 2023, 43(6): 95-99. doi: 10.13779/j.cnki.issn1001-0076.2023.06.011
GUO Kai, ZHANG Guofu, ZHANG Guohua, GUO Zhou, LI Weichao, LIU Wengang. Comparative Study on Floatation of Low Rank Coal Slime by Compound Coal-based Fischer-tropsch Synthetic Oil and Traditional Hydrocarbon Oil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 95-99. doi: 10.13779/j.cnki.issn1001-0076.2023.06.011
Citation: GUO Kai, ZHANG Guofu, ZHANG Guohua, GUO Zhou, LI Weichao, LIU Wengang. Comparative Study on Floatation of Low Rank Coal Slime by Compound Coal-based Fischer-tropsch Synthetic Oil and Traditional Hydrocarbon Oil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 95-99. doi: 10.13779/j.cnki.issn1001-0076.2023.06.011

复配煤基费托合成油与传统烃类油浮选低阶煤泥的对比研究

详细信息
    作者简介: 郭凯(1984—),男,山西长治人,工程师,主要从事煤基费托合成油检测及化工检验分析工作,Email:gksmail@163.com
    通讯作者: 刘文刚(1981—),男,山东潍坊人,教授,博士生导师,主要从事选矿药剂研发及矿物加工过程中的环境保护相关研究,E-mail:liuwengang@mail.neu.edu.cn
  • 中图分类号: TD94

Comparative Study on Floatation of Low Rank Coal Slime by Compound Coal-based Fischer-tropsch Synthetic Oil and Traditional Hydrocarbon Oil

More Information
  • 为进一步拓展煤基费托合成油的利用途径,发展低能耗、低污染、低排放、低成本的绿色利用技术,并赋能煤化工碳达峰和碳中和,以煤基费托合成油为基础,通过复配制得新型捕收剂,并考察了其与传统烃类油在低阶煤泥浮选中的应用效果。结果表明,复配煤基费托合成油可作为煤泥浮选捕收剂使用,且在用量相同的条件下,可获得比传统烃类油捕收剂更好的浮选指标。在捕收剂用量为50 g/t时,采用煤油为捕收剂,获得的精煤灰分为9.01%、精煤产率为86.48%,而采用煤基费托合成油JZC-1、LHC-1与JCZC以质量比1∶1∶1进行三元复配作捕收剂,精煤灰分为8.96%、精煤产率为86.80%。与传统烃类油相比,复配煤基费托合成油中存在更长的碳链,且存在一定的异构烷烃,通过优化捕收剂中烷烃碳链长短和支链数量,提高了其选择性和捕收能力,因此在相同的用量条件下,可获得灰分更低、产率更高的精煤产品。

  • 加载中
  • 图 1  浮选实验流程

    Figure 1. 

    图 2  煤油和0#柴油用量对煤泥浮选效果的影响

    Figure 2. 

    图 3  LHC-1、JCQC、JZC-1和JCZC用量对煤泥浮选效果的影响

    Figure 3. 

    图 4  JZC-1与LHC-1、JCQC和JCZC复配对煤泥浮选效果的影响(a: JZC-1/JCQC;b: JZC-1/LHC-1;c: JZC-1/JCZC)

    Figure 4. 

    图 5  JZC-1和LHC-1与JCQC和JCZC复配对煤泥浮选效果的影响(d: JZC-1/LHC-1/JCZC;e: JZC-1/ LHC-1/JCQC)

    Figure 5. 

    表 1  煤样的工业分析

    Table 1.  Industrial analysis of coal samples /%

    水分灰分挥发分固定碳
    0.9217.3010.7471.04
    下载: 导出CSV

    表 2  煤基费托合成油品的正构烷烃和异构烷烃含量分析

    Table 2.  Analysis of n-alkane and isoparaffin content of coal-based fischer-tropsch synthetic oil /%

    种类LHC-1JCQCJZC-1JCZC
    正构烷烃14.9314.7393.734.08
    异构烷烃85.0785.276.2795.92
    下载: 导出CSV

    表 3  煤基费托合成油品不同碳链长度含量

    Table 3.  Carbon chain length content of coal-based fischer-tropsch synthetic oil products /%

    碳链长度LHC-1JCQCJZC-1JCZC
    C8~1694.4299.8994.4846.26
    C17~255.580.115.5253.74
    下载: 导出CSV
  • [1]

    王晓亮. 费托合成技术的发展前景[J]. 山西化工, 2018, 38(3): 49−51.

    WANG X L. Development prospect of Fischer-Tropsch synthesis technology[J]. Shanxi Chemical Industry, 2018, 38(3): 49−51.

    [2]

    闫秀婷. 费托合成技术介绍[J]. 当代化工, 2013, 42(6): 821−822.

    YAN X T. Introduction of Fischer-Tropsch synthesis technology[J]. Contemporary Chemical Industry, 2013, 42(6): 821−822.

    [3]

    CHEN C B, HOU B, LIU Y, et al. Carbon species on the surface of carbon-coated catalysts and their effects on Fischer-Tropsch synthesis products[J]. Fuel, 2024, 341: 127381.

    [4]

    CHEN Z P, MENG Y L, LU J, et al. The Effect of hydrophobically modified iron catalysts with hexadecyltrimethoxysilane on fischer-tropsch synthesis[J]. Chemistry Select, 2023, 8: e202202903.

    [5]

    任雷平, 胡小刚, 胡玉玺. 混合药剂系统在煤浮选中的研究进展[J]. 中国煤炭, 2023, 49(6): 98−104. doi: 10.3969/j.issn.1006-530X.2023.06.014

    REN L P, HU X G, HU Y X. Research progress of mixed reagent system in coal flotation[J]. China Coal, 2023, 49(6): 98−104. doi: 10.3969/j.issn.1006-530X.2023.06.014

    [6]

    夏阳超, 蘧鹏程, 邢耀文, 等. 基于分子对接技术的难浮煤浮选捕收剂虚拟筛选研究[J]. 煤炭学报, 2022(1): 1−19.

    XIA Y C, QU P C, XING Y W, et al. Study on virtual screening of collector for flotation of difficult floating coal based on molecular docking technology[J]. Journal of China Coal Society, 2022(1): 1−19.

    [7]

    曹亦俊, 闫小康, 王利军, 等. 微细粒浮选的微观湍流强化[J]. 矿产保护与利用, 2017(2): 113−118. doi: 10.13779/j.cnki.issn1001-0076.2017.02.021

    CAO Y J, YAN X K, WANG L J, et al. Microturbulence enhancement of fine flotation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 113−118. doi: 10.13779/j.cnki.issn1001-0076.2017.02.021

    [8]

    王晖, 李志红, 樊民强, 等. 羧酸对低阶煤泥浮选的促进作用研究[J]. 矿产综合利用, 2023(2): 45−51.

    WANG H, LI Z H, FAN M Q, et al. Study on promoting effect of carboxylic acid on flotation of low-rank slime[J]. Comprehensive Utilization of Mineral Resources, 2023(2): 45−51.

    [9]

    CHENG G, ZHANG M N, LU Y, et al. New insights for improving low-rank coal flotation performance via emulsified waste fried oil collector[J]. Fuel, 2024, 357: 129925. doi: 10.1016/j.fuel.2023.129925

    [10]

    ZHANG M N, CHENG G, LU YANG, et al. Preparation of long-flame coal flotation collector from waste cooking oil[J]. Minerals Engineering, 2023, 202: 108296. doi: 10.1016/j.mineng.2023.108296

    [11]

    赵俊吉, 王钰赛, 刘晓康, 等. 新型复配捕收剂强化低阶煤泥浮选机理研究[J]. 矿业研究与开发, 2022, 42(5): 33−39.

    ZHAO J J, WANG Y S, LIU X K, et al. Study on mechanism of strengthening low-rank slime flotation with new compound collector[J]. Mining Research and Development, 2022, 42(5): 33−39.

    [12]

    陈嘉亮, 朱文耀, 常梦洁, 等. 煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的实验研究[J]. 矿产保护与利用, 2023, 43(2): 20−26.

    CHEN J L, ZHU W Y, CHANG M J, et al. Experimental study on the slime flotation of Nanliang coal mine with kerosene/methyl oleate compound collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 20−26.

    [13]

    荀海鑫, 康文泽, 刘松阳. AO捕收剂对稀缺难浮煤泥的捕收效果研究[J]. 煤炭科学技术, 2012, 40(8): 118−124.

    XUN H X, KANG W Z, LIU S Y. Study on collecting effect of AO collector on scarce and difficult-to-float coal slime[J]. Coal science and technology, 2012, 40(8): 118−124.

    [14]

    康文泽, 刘松阳, 张亚革. AO捕收剂浮选稀缺难浮煤实验[J]. 黑龙江科技学院学报, 2011, 21(2): 85−88.

    KANG W Z, LIU S Y, ZHANG Y G. Experiment on flotation of scarce and difficult-to-float coal with AO collector[J]. Journal of Heilongjiang Institute of Science and Technology, 2011, 21(2): 85−88.

    [15]

    夏阳超. 褐煤表面吸水机理及润湿性调控的分子模拟研究[D]. 太原: 太原理工大学, 2018.

    XIA Y C. Molecular simulation of water absorption mechanism and wettability regulation on lignite surface[D]. Taiyuan: Taiyuan University of Technology, 2018.

    [16]

    解维伟, 王亚宁, 张子洞, 等. 同碳数烷烃捕收剂的结构对浮选性能的影响[J]. 矿产综合利用, 2023. Http://kns.cnki.net/kcms/detail/51.1251.td.20231011.1101.002.html.

    XIE W W, WANG Y N, ZHANG Z D, et al. Influence of the structure of same carbon number alkane traps on flotation performance[J]. Comprehensive Utilization of Minerals Resources, 2023. Http://kns.cnki.net/kcms/detail/51.1251.td.20231011.1101.002.html.

  • 加载中

(5)

(3)

计量
  • 文章访问数:  544
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2023-11-28
刊出日期:  2023-12-25

目录