微细鳞片石墨纳米气泡浮选与传统浮选的对比研究

李明娇, 南楠, 马芳源, 李湘微, 王睿, 张迪, 唐崇亮. 微细鳞片石墨纳米气泡浮选与传统浮选的对比研究[J]. 矿产保护与利用, 2024, 44(1): 40-45. doi: 10.13779/j.cnki.issn1001-0076.2024.01.005
引用本文: 李明娇, 南楠, 马芳源, 李湘微, 王睿, 张迪, 唐崇亮. 微细鳞片石墨纳米气泡浮选与传统浮选的对比研究[J]. 矿产保护与利用, 2024, 44(1): 40-45. doi: 10.13779/j.cnki.issn1001-0076.2024.01.005
LI Mingjiao, NAN Nan, MA Fangyuan, LI Xiangwei, WANG Rui, ZHANG Di, TANG Chongliang. Comparative Study of Nanobubble Flotation and Traditional Flotation for Micro-fine Flake Graphite[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 40-45. doi: 10.13779/j.cnki.issn1001-0076.2024.01.005
Citation: LI Mingjiao, NAN Nan, MA Fangyuan, LI Xiangwei, WANG Rui, ZHANG Di, TANG Chongliang. Comparative Study of Nanobubble Flotation and Traditional Flotation for Micro-fine Flake Graphite[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 40-45. doi: 10.13779/j.cnki.issn1001-0076.2024.01.005

微细鳞片石墨纳米气泡浮选与传统浮选的对比研究

  • 基金项目: 辽宁省教育厅高等学校基本科研项目(LJKQZ20222340);辽宁科技大学博士启动基金;辽宁科技大学大学生创新创业训练计划项目经费
详细信息
    作者简介: 李明娇(2004—),女,辽宁锦州人,本科生,研究方向为细颗粒矿物浮选,E-mail:3068244273@qq.com
    通讯作者: 马芳源(1991—),男,辽宁凌源人,博士,研究方向为细颗粒矿物浮选,E-mail:1209468883@qq.com
  • 中图分类号: TD923;TD975+.2

Comparative Study of Nanobubble Flotation and Traditional Flotation for Micro-fine Flake Graphite

More Information
  • 微细鳞片石墨资源将是未来利用的主要石墨资源,为了实现微细鳞片石墨高效回收,探究了纳米气泡对微细鳞片石墨浮选强化行为的影响。通过浮选动力学、激光粒度分析仪、Zeta电位仪以及接触角分析仪研究了纳米气泡浮选和传统浮选行为的差异。结果表明,纳米气泡比传统浮选提前25 s完成微细鳞片石墨浮选。传统浮选精矿回收率和碳含量分别为87.89%和72.31%,纳米气泡浮选精矿回收率和碳含量分别为92.91%和73.40%,相比传统浮选精矿回收率高约5百分点,碳含量高约1百分点。纳米气泡可以有效团聚微细鳞片石墨,增大其表观尺寸,改善浮选效果。纳米气泡可以回收传统浮选不能有效回收的10 μm以下微细鳞片石墨,进而提高了回收率。纳米气泡浮选精矿表面接触角比传统浮选精矿表面接触角高6.92°,有利于柴油在石墨表面的吸附,改善了石墨表面疏水性。纳米气泡降低了微细鳞片石墨颗粒间的静电斥力,有利于微细鳞片石墨疏水性团聚体的稳定结构,从而提高浮选概率。

  • 加载中
  • 图 1  样品中石墨粒度分布情况

    Figure 1. 

    图 2  纳米气泡浮选与常规浮选实验装置示意图[7]

    Figure 2. 

    图 3  0.1 L/min的充气速率下纳米气泡的尺寸分布

    Figure 3. 

    图 4  纳米气泡对微细鳞片石墨浮选动力学的影响

    Figure 4. 

    图 5  纳米气泡对矿浆颗粒粒度的影响

    Figure 5. 

    图 6  纳米气泡对微细鳞片石墨浮选精矿粒度的影响

    Figure 6. 

    图 7  纳米气泡和传统气泡两种情况下石墨表面接触角(a)和石墨表面电位(b)

    Figure 7. 

    表 1  样品主要矿物组成

    Table 1.  Main mineral composition of the sample

    矿物石墨白云母黄铁矿石英石榴石高岭石
    含量/%29.8617.298.2022.124.367.26
    下载: 导出CSV
  • [1]

    马芳源. 石墨矿纳米气泡高效浮选及其机理研究[D]. 徐州: 中国矿业大学, 2022.

    MA F Y. Study on high−efficiency nanobubble flotation of graphite ore and its mechanisms[D]. Xuzhou: China University of Mining and Technology, 2022.

    [2]

    ZHANG D, MA F, TAO Y. Study on effect of nanobubble on ultra−fine flake graphite (UFG) flotation[J]. Particulate Science and Technology, 2023, 41(7): 1062−1070.

    [3]

    KANG W, LI H. Enhancement of flaky graphite cleaning by ultrasonic treatment[J]. Royal Society Open Science, 2019, 6(12): 191160. doi: 10.1098/rsos.191160

    [4]

    BU X, ZHANG T, CHEN Y, et al. Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite[J]. Physicochemical Problems of Mineral Processing, 2018, 54(3): 732−740.

    [5]

    BU X, ZHANG T, PENG Y, et al. Multi−stage flotation for the removal of ash from fine graphite using mechanical and centrifugal forces[J]. Minerals, 2018, 8(1): 15.

    [6]

    SHI Q, LIANG X, FENG Q, et al. The relationship between the stability of emulsified diesel and flotation of graphite[J]. Minerals Engineering, 2015, 78: 89−92. doi: 10.1016/j.mineng.2015.04.014

    [7]

    MA F, TAO D, TAO Y, et al. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation[J]. International Journal of Mining Science and Technology, 2021, 31(6): 1063−1074. doi: 10.1016/j.ijmst.2021.06.005

    [8]

    ALHESHIBRI M, QIAN J, JEHANNIN M, et al. A history of nanobubbles[J]. Langmuir, 2016, 32: 11086−11100. doi: 10.1021/acs.langmuir.6b02489

    [9]

    SADA E, Y ASUNISHI A, KATOH S, et al. Bubble formation in flowing liquid[J]. The Canadian Journal of Chemical Engineering, 1978, 56(6): 669–672.

    [10]

    TANG C, MA F, WU T, et al. Study on surface physical and chemical mechanism of nanobubble enhanced flotation of fine graphite[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 389−396. doi: 10.1016/j.jiec.2023.02.039

    [11]

    ZHANG X, WANG Q, WU Z, et al. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles[J]. International Journal of Minerals Metallurgy and Materials, 2021, 27(2): 152−161.

    [12]

    MA F, TAO D. A study of mechanisms of nanobubble−enhanced flotation of graphite[J]. Nanomaterials, 2022, 12(19): 3361. doi: 10.3390/nano12193361

    [13]

    LIU L, HU S, WU C, et al. Aggregates characterizations of the ultra−fine coal particles induced by nanobubbles[J]. Fuel, 2021, 297: 120765. doi: 10.1016/j.fuel.2021.120765

    [14]

    ZHOU W, CHEN H, OU L, et al. Aggregation of ultra−fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003

    [15]

    MA F, TAO D, TAO Y. Effects of nanobubbles in column flotation of Chinese sub−bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2022, 42(4): 1126−1142. doi: 10.1080/19392699.2019.1692340

    [16]

    SOBHY A, TAO D. Nanobubble column flotation of fine coal particles and associated fundamentals[J]. International Journal of Mineral Processing, 2013, 124: 109−116. doi: 10.1016/j.minpro.2013.04.016

    [17]

    CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64−70. doi: 10.1016/j.minpro.2015.02.010

  • 加载中

(7)

(1)

计量
  • 文章访问数:  215
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2023-10-04
刊出日期:  2024-02-15

目录