Research on the Flotation Separation of Fine−grained Hematite and Quartz by Combined Cation−anion Collectors
-
摘要:
考察了十二烷基磺酸钠(SDS)、十二烷基硫酸钠(SLS)、十二烷基苯磺酸钠(SDBS)以及油酸钠(NaOL)四种阴离子捕收剂分别与阳离子捕收剂十二胺(DDA)组合对浮选分离微细粒(−18 μm)赤铁矿和石英的影响。单矿物实验表明,与单一DDA相比,四种阴离子捕收剂分别与DDA组合使用能够降低赤铁矿的浮选回收率,有利于减少赤铁矿的抑制剂用量。十二胺与阴离子捕收剂组合使用时,四种阴离子捕收剂对微细粒赤铁矿和石英分离效果为:SDS>NaOL>SLS/SDBS。其中,DDA+SDS组合捕收剂在一定质量比例条件下组合使用的效果最优,在最佳浮选条件下(pH=7,捕收剂用量为20 mg/L,m(DDA)∶m(SDS)=2∶1,抑制剂用量为20 mg/L),泡沫产品中石英回收率达到91.05%,赤铁矿回收率仅为6.7%,有利于赤铁矿反浮选。人工混合矿物浮选实验结果表明,使用DDA+SDS组合捕收剂(m(DDA)∶m(SDS)=2∶1)获得精矿Fe品位为45.7%、回收率为87.0%,与单一DDA相比,分别提高了1.7、18.6百分点,有利于提高赤铁矿和石英的分离效果,DDA+SDS可作为微细粒赤铁矿和石英浮选分离的优良阴阳离子捕收剂。
Abstract:The influence of four anionic collectors, namely sodium dodecyl sulfate (SDS), sodium lauryl sulfate (SLS), sodium dodecyl benzene sulfonate (SDBS), and sodium oleate (NaOL), in combination with the cationic collector dodecylamine (DDA), on the flotation separation of fine−grained (−18 μm) hematite and quartz was investigated. Single mineral experiments indicated that each of the four anionic collectors in combination with DDA reduced the flotation recovery of hematite in the foam product compared to DDA alone, thus favoring a reduction in the depressant dosage for hematite. When DDA was combined with anionic collectors, the order of separation effectiveness for fine−grained hematite and quartz was SDS > NaOL > SLS/SDBS. Among them, the DDA+SDS combinated collectors exhibited the best performance under certain mass ratio conditions. Under the optimal flotation conditions (pH=7, collector dosage of 20 mg/L, m(DDA)∶m(SDS)=2∶1, depressant dosage of 20 mg/L), the quartz recovery in the foam product reached 91.05%, while the hematite recovery was only 6.7%, facilitating hematite reverse flotation. Artificial mixed mineral flotation experiments showed that the DDA+SDS combinated collectors (m(DDA)∶m(SDS)=2∶1) achieved a concentrate with Fe grade of 45.7% and a recovery rate of 87.0%. Compared to DDA alone, this represented an increase of 1.7 and 18.6 percentage points, respectively, contributing to an improved separation efficiency of hematite and quartz. DDA+SDS can be considered an excellent anionic−cationic collectors for the flotation separation of fine−grained hematite and quartz.
-
Key words:
- hematite /
- quartz /
- dodecylamine /
- combined cation−anion collector /
- flotation
-
-
[1] 刘梦飞, 刘育明. “基石计划”对我国铁矿石资源开发格局的影响分析[J]. 中国矿山工程, 2022, 51(5): 6−10.
LIU M F, LIU Y M. Effect analysis of "Foundation Plan" on China's iron ore resources development pattern[J]. China Mine Engineering, 2022, 51(5): 6−10.
[2] 中国矿产资源报告2022[J]. 自然资源情报, 2023(1): 2.
China mineral resources report 2022[J]. Natural Resource Information, 2023(1): 2
[3] 罗溪梅, 吴雪僮, 齐琳萍, 等. 四种胺类捕收剂体系中两相泡沫和赤铁矿/石英三相泡沫的稳定性[J]. 有色金属工程, 2022, 12(12): 84−90. doi: 10.3969/j.issn.2095-1744.2022.12.011
LUO X M, WU X T, QI L P, et al. Foam stability of two phase and hematite/quartz three phase in four amine collector systems[J]. Nonferrous Metals Engineering, 2022, 12(12): 84−90. doi: 10.3969/j.issn.2095-1744.2022.12.011
[4] 王荣林, 李明军, 常鲁平, 等. 国外某赤铁矿选矿工艺研究[J]. 现代矿业, 2023, 39(1): 172−175. doi: 10.3969/j.issn.1674-6082.2023.01.039
WANG R L, LI M J, CHANG L P, et al. Study on beneficiation technology of a hematite abroad[J]. Modern Mining, 2023, 39(1): 172−175. doi: 10.3969/j.issn.1674-6082.2023.01.039
[5] 马艺闻, 徐冬林. 赤铁矿常温浮选的阴离子捕收剂研制与试验[J]. 矿冶工程, 2014, 34(6): 53−55.
MA Y W, XU D L. Development and evaluation of anionic collector KA−1 for hematite flotation at room temperature[J]. Mining and Metallurgical Engineering, 2014, 34(6): 53−55.
[6] 何建聪, 罗溪梅, 蒋旺强, 等. 十二胺与十二烷基磺酸钠组合捕收剂对赤铁矿浮选的优化及其泡沫性能调控[J]. 有色金属工程, 2023, 13(5): 75−83. doi: 10.3969/j.issn.2095-1744.2023.05.011
HE J C, LUO X M, JIANG W Q, et al. Optimization of mixed collector of DDA and SDS on flotation and foam during hematite flotation[J]. Nonferrous Metals Engineering, 2023, 13(5): 75−83. doi: 10.3969/j.issn.2095-1744.2023.05.011
[7] 周永锋, 罗溪梅, 宋水祥, 等. 四种阳离子捕收剂对赤铁矿和石英浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 56−61.
ZHOU Y F, LUO X M, SONG S X, et al. Effect of four kinds of cationic collectors on flotation of hematite and quartz[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 56−61.
[8] TSAVE P K, KOSTOGLOU M, KARAPANTSIOS T D, et al. Enhancing fines recovery by hybrid flotation column and mixed collectors[J]. Minerals, 2023, 13(7): 849. doi: 10.3390/min13070849
[9] XU L, HU Y, TIAN J, et al. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors[J]. Minerals Engineering, 2016, 89: 84−92. doi: 10.1016/j.mineng.2016.01.013
[10] 刘文宝, 甘琦强, 刘文刚, 等. 新型组合捕收剂对锂云母、钠长石和石英的浮选性能研究[J]. 矿产保护与利用, 2023, 43(3): 34−42.
LIU W B, GAN Q Q, LIU W G, et al. Study on the flotation performance of a new combined collector for lepidolite, albite and quartz[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 34−42.
[11] 常自勇, 李玉娇, 沈政昌, 等. 微细粒矿物浮选捕收剂的应用及其机理研究进展[J]. 工程科学学报, 2023, 45(11): 1807−1819.
CHANG Z Y, LI Y J, SHEN Z C, et al. Advancements in the application and mechanism of fine−grained mineral flotation collectors[J]. Chinese Journal of Engineering, 2023, 45(11): 1807−1819.
[12] LIU Y, XU R, SUN N, et al. Effect of metal ions on the flotation separation of biotite from quartz using mixed anionic/cationic collectors[J]. Chemical Engineering Science, 2023, 281: 119184. doi: 10.1016/j.ces.2023.119184
[13] ZHANG N N, PANG T, HAN R, et al. Insight into anionic and cationic flotation discrepancy of quartz with altered surface roughness by acid etching[J]. Journal of Molecular Liquids, 2023, 381: 121816. doi: 10.1016/j.molliq.2023.121816
[14] ZHAO J, LUO H, LIU Y, et al. Mechanistic study and application of anionic/cationic combination collector ST−8 for the flotation of spodumene[J]. Minerals, 2023, 13(9): 1177. doi: 10.3390/min13091177
[15] BAI Y, WEN W, GAO Y, et al. Molecular dynamics simulations of the structure–property relationships of DDA/anionic surfactant mixtures at the air/water interface[J]. Journal of Molecular Liquids, 2022, 368: 120804. doi: 10.1016/j.molliq.2022.120804
[16] 白阳, 崔万顺, 文伟翔, 等. 阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理[J]. 矿产保护与利用, 2023, 43(1): 44−49.
BAI Y, CUI W S, WEN W X, et al. Synergistic mechanism of mixed anionic/cationic collectors at gas−liquid interface in lepidolite flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 44−49.
[17] WANG L, LIU R, HU Y, et al. Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz[J]. Powder Technology, 2016, 302: 15−20. doi: 10.1016/j.powtec.2016.08.043
[18] 罗柳, 王毓华, 朱广丽, 等. 混合捕收剂浮选锂辉石的应用及作用机理[J]. 中国有色金属学报, 2020, 30(3): 675−683. doi: 10.11817/j.ysxb.1004.0609.2020-37550
LUO L, WANG Y H, ZHU G L, et al. Application and interaction mechanism of mixed collector in flotation of spodumene[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 675−683. doi: 10.11817/j.ysxb.1004.0609.2020-37550
[19] 张钊, 冯启明, 王维清, 等. 十二胺和十二烷基磺酸钠在长石石英表面的吸附[J]. 非金属矿, 2012, 35(4): 8−11,15. doi: 10.3969/j.issn.1000-8098.2012.04.003
ZHANG Z, FENG Q M, WANG W Q, et al. Adsorption of dodecyl amine and sodium dodecyl sulfonate on feldspar and quartz[J]. Non−metallic Mines, 2012, 35(4): 8−11,15. doi: 10.3969/j.issn.1000-8098.2012.04.003
[20] LI M, LIU Z, WANG B, et al. Selective flotation separation of fluorite from calcite using mixed anionic/cationic collectors[J]. Minerals Engineering, 2022, 178: 107423. doi: 10.1016/j.mineng.2022.107423
[21] ZHANG Z Y, WEI Q, JIAO F, et al. Role of nanobubbles on the fine lepidolite flotation with mixed cationic/anionic collector[J]. Powder Technology, 2023, 427: 118785. doi: 10.1016/j.powtec.2023.118785
-