阴阳离子组合捕收剂对微细粒赤铁矿与石英浮选分离的研究

贾蕗繁, 罗溪梅, 王云帆, 宋振国, 周永锋, 蒋旺强, 洪欣. 阴阳离子组合捕收剂对微细粒赤铁矿与石英浮选分离的研究[J]. 矿产保护与利用, 2024, 44(1): 33-39. doi: 10.13779/j.cnki.issn1001-0076.2024.01.004
引用本文: 贾蕗繁, 罗溪梅, 王云帆, 宋振国, 周永锋, 蒋旺强, 洪欣. 阴阳离子组合捕收剂对微细粒赤铁矿与石英浮选分离的研究[J]. 矿产保护与利用, 2024, 44(1): 33-39. doi: 10.13779/j.cnki.issn1001-0076.2024.01.004
JIA Lufan, LUO Ximei, WANG Yunfan, SONG Zhenguo, ZHOU Yongfeng, JIANG Wangqiang, HONG Xin. Research on the Flotation Separation of Fine−grained Hematite and Quartz by Combined Cation−anion Collectors[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 33-39. doi: 10.13779/j.cnki.issn1001-0076.2024.01.004
Citation: JIA Lufan, LUO Ximei, WANG Yunfan, SONG Zhenguo, ZHOU Yongfeng, JIANG Wangqiang, HONG Xin. Research on the Flotation Separation of Fine−grained Hematite and Quartz by Combined Cation−anion Collectors[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 33-39. doi: 10.13779/j.cnki.issn1001-0076.2024.01.004

阴阳离子组合捕收剂对微细粒赤铁矿与石英浮选分离的研究

  • 基金项目: 国家自然科学基金项目 (52364029; 52264030); 矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM−KJSKL−2023−10); 云南省科技厅昆明理工大学“双一流”创建联合专项面上项目(202201BE070001−048)
详细信息
    作者简介: 贾蕗繁 (2000—),女,河北邯郸人,硕士,从事选矿理论与技术研究,E-mail:jialufan_f@163.com
    通讯作者: 罗溪梅 (1986—),女,四川绵阳人,教授,博士,从事选矿理论与技术研究,E-mail: 85128225@163.com 王云帆 (1985—),男,山东威海人,讲师,博士,从事选矿理论与技术研究,E-mail: asc_cloud@aliyun.com
  • 中图分类号: TD923+.14;TD951.1

Research on the Flotation Separation of Fine−grained Hematite and Quartz by Combined Cation−anion Collectors

More Information
  • 考察了十二烷基磺酸钠(SDS)、十二烷基硫酸钠(SLS)、十二烷基苯磺酸钠(SDBS)以及油酸钠(NaOL)四种阴离子捕收剂分别与阳离子捕收剂十二胺(DDA)组合对浮选分离微细粒(−18 μm)赤铁矿和石英的影响。单矿物实验表明,与单一DDA相比,四种阴离子捕收剂分别与DDA组合使用能够降低赤铁矿的浮选回收率,有利于减少赤铁矿的抑制剂用量。十二胺与阴离子捕收剂组合使用时,四种阴离子捕收剂对微细粒赤铁矿和石英分离效果为:SDS>NaOL>SLS/SDBS。其中,DDA+SDS组合捕收剂在一定质量比例条件下组合使用的效果最优,在最佳浮选条件下(pH=7,捕收剂用量为20 mg/L,m(DDA)∶m(SDS)=2∶1,抑制剂用量为20 mg/L),泡沫产品中石英回收率达到91.05%,赤铁矿回收率仅为6.7%,有利于赤铁矿反浮选。人工混合矿物浮选实验结果表明,使用DDA+SDS组合捕收剂(m(DDA)∶m(SDS)=2∶1)获得精矿Fe品位为45.7%、回收率为87.0%,与单一DDA相比,分别提高了1.7、18.6百分点,有利于提高赤铁矿和石英的分离效果,DDA+SDS可作为微细粒赤铁矿和石英浮选分离的优良阴阳离子捕收剂。

  • 加载中
  • 图 1  赤铁矿(a)和石英(b)的X射线衍射图

    Figure 1. 

    图 2  不同捕收剂体系中pH值对赤铁矿(a)和石英(b)回收率的影响

    Figure 2. 

    图 3  不同捕收剂体系中捕收剂用量对赤铁矿(a)和石英(b)回收率的影响

    Figure 3. 

    图 4  十二胺与十二烷基磺酸钠的质量比对赤铁矿和石英回收率的影响

    Figure 4. 

    图 5  十二胺与十二烷基硫酸钠的质量比对赤铁矿和石英回收率的影响

    Figure 5. 

    图 6  十二胺与十二烷基苯磺酸钠的质量比对赤铁矿和石英回收率的影响

    Figure 6. 

    图 7  十二胺与油酸钠的质量比对赤铁矿和石英回收率的影响

    Figure 7. 

    图 8  不同捕收剂体系中淀粉用量对赤铁矿(a)和石英(b)回收率的影响

    Figure 8. 

    图 9  人工混合矿物浮选结果

    Figure 9. 

  • [1]

    刘梦飞, 刘育明. “基石计划”对我国铁矿石资源开发格局的影响分析[J]. 中国矿山工程, 2022, 51(5): 6−10.

    LIU M F, LIU Y M. Effect analysis of "Foundation Plan" on China's iron ore resources development pattern[J]. China Mine Engineering, 2022, 51(5): 6−10.

    [2]

    中国矿产资源报告2022[J]. 自然资源情报, 2023(1): 2.

    China mineral resources report 2022[J]. Natural Resource Information, 2023(1): 2

    [3]

    罗溪梅, 吴雪僮, 齐琳萍, 等. 四种胺类捕收剂体系中两相泡沫和赤铁矿/石英三相泡沫的稳定性[J]. 有色金属工程, 2022, 12(12): 84−90. doi: 10.3969/j.issn.2095-1744.2022.12.011

    LUO X M, WU X T, QI L P, et al. Foam stability of two phase and hematite/quartz three phase in four amine collector systems[J]. Nonferrous Metals Engineering, 2022, 12(12): 84−90. doi: 10.3969/j.issn.2095-1744.2022.12.011

    [4]

    王荣林, 李明军, 常鲁平, 等. 国外某赤铁矿选矿工艺研究[J]. 现代矿业, 2023, 39(1): 172−175. doi: 10.3969/j.issn.1674-6082.2023.01.039

    WANG R L, LI M J, CHANG L P, et al. Study on beneficiation technology of a hematite abroad[J]. Modern Mining, 2023, 39(1): 172−175. doi: 10.3969/j.issn.1674-6082.2023.01.039

    [5]

    马艺闻, 徐冬林. 赤铁矿常温浮选的阴离子捕收剂研制与试验[J]. 矿冶工程, 2014, 34(6): 53−55.

    MA Y W, XU D L. Development and evaluation of anionic collector KA−1 for hematite flotation at room temperature[J]. Mining and Metallurgical Engineering, 2014, 34(6): 53−55.

    [6]

    何建聪, 罗溪梅, 蒋旺强, 等. 十二胺与十二烷基磺酸钠组合捕收剂对赤铁矿浮选的优化及其泡沫性能调控[J]. 有色金属工程, 2023, 13(5): 75−83. doi: 10.3969/j.issn.2095-1744.2023.05.011

    HE J C, LUO X M, JIANG W Q, et al. Optimization of mixed collector of DDA and SDS on flotation and foam during hematite flotation[J]. Nonferrous Metals Engineering, 2023, 13(5): 75−83. doi: 10.3969/j.issn.2095-1744.2023.05.011

    [7]

    周永锋, 罗溪梅, 宋水祥, 等. 四种阳离子捕收剂对赤铁矿和石英浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 56−61.

    ZHOU Y F, LUO X M, SONG S X, et al. Effect of four kinds of cationic collectors on flotation of hematite and quartz[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 56−61.

    [8]

    TSAVE P K, KOSTOGLOU M, KARAPANTSIOS T D, et al. Enhancing fines recovery by hybrid flotation column and mixed collectors[J]. Minerals, 2023, 13(7): 849. doi: 10.3390/min13070849

    [9]

    XU L, HU Y, TIAN J, et al. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors[J]. Minerals Engineering, 2016, 89: 84−92. doi: 10.1016/j.mineng.2016.01.013

    [10]

    刘文宝, 甘琦强, 刘文刚, 等. 新型组合捕收剂对锂云母、钠长石和石英的浮选性能研究[J]. 矿产保护与利用, 2023, 43(3): 34−42.

    LIU W B, GAN Q Q, LIU W G, et al. Study on the flotation performance of a new combined collector for lepidolite, albite and quartz[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 34−42.

    [11]

    常自勇, 李玉娇, 沈政昌, 等. 微细粒矿物浮选捕收剂的应用及其机理研究进展[J]. 工程科学学报, 2023, 45(11): 1807−1819.

    CHANG Z Y, LI Y J, SHEN Z C, et al. Advancements in the application and mechanism of fine−grained mineral flotation collectors[J]. Chinese Journal of Engineering, 2023, 45(11): 1807−1819.

    [12]

    LIU Y, XU R, SUN N, et al. Effect of metal ions on the flotation separation of biotite from quartz using mixed anionic/cationic collectors[J]. Chemical Engineering Science, 2023, 281: 119184. doi: 10.1016/j.ces.2023.119184

    [13]

    ZHANG N N, PANG T, HAN R, et al. Insight into anionic and cationic flotation discrepancy of quartz with altered surface roughness by acid etching[J]. Journal of Molecular Liquids, 2023, 381: 121816. doi: 10.1016/j.molliq.2023.121816

    [14]

    ZHAO J, LUO H, LIU Y, et al. Mechanistic study and application of anionic/cationic combination collector ST−8 for the flotation of spodumene[J]. Minerals, 2023, 13(9): 1177. doi: 10.3390/min13091177

    [15]

    BAI Y, WEN W, GAO Y, et al. Molecular dynamics simulations of the structure–property relationships of DDA/anionic surfactant mixtures at the air/water interface[J]. Journal of Molecular Liquids, 2022, 368: 120804. doi: 10.1016/j.molliq.2022.120804

    [16]

    白阳, 崔万顺, 文伟翔, 等. 阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理[J]. 矿产保护与利用, 2023, 43(1): 44−49.

    BAI Y, CUI W S, WEN W X, et al. Synergistic mechanism of mixed anionic/cationic collectors at gas−liquid interface in lepidolite flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 44−49.

    [17]

    WANG L, LIU R, HU Y, et al. Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz[J]. Powder Technology, 2016, 302: 15−20. doi: 10.1016/j.powtec.2016.08.043

    [18]

    罗柳, 王毓华, 朱广丽, 等. 混合捕收剂浮选锂辉石的应用及作用机理[J]. 中国有色金属学报, 2020, 30(3): 675−683. doi: 10.11817/j.ysxb.1004.0609.2020-37550

    LUO L, WANG Y H, ZHU G L, et al. Application and interaction mechanism of mixed collector in flotation of spodumene[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 675−683. doi: 10.11817/j.ysxb.1004.0609.2020-37550

    [19]

    张钊, 冯启明, 王维清, 等. 十二胺和十二烷基磺酸钠在长石石英表面的吸附[J]. 非金属矿, 2012, 35(4): 8−11,15. doi: 10.3969/j.issn.1000-8098.2012.04.003

    ZHANG Z, FENG Q M, WANG W Q, et al. Adsorption of dodecyl amine and sodium dodecyl sulfonate on feldspar and quartz[J]. Non−metallic Mines, 2012, 35(4): 8−11,15. doi: 10.3969/j.issn.1000-8098.2012.04.003

    [20]

    LI M, LIU Z, WANG B, et al. Selective flotation separation of fluorite from calcite using mixed anionic/cationic collectors[J]. Minerals Engineering, 2022, 178: 107423. doi: 10.1016/j.mineng.2022.107423

    [21]

    ZHANG Z Y, WEI Q, JIAO F, et al. Role of nanobubbles on the fine lepidolite flotation with mixed cationic/anionic collector[J]. Powder Technology, 2023, 427: 118785. doi: 10.1016/j.powtec.2023.118785

  • 加载中

(9)

计量
  • 文章访问数:  176
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2023-12-10
刊出日期:  2024-02-15

目录