-
摘要:
为分析气溶胶处理丁基黄药对黄铁矿浮选效果的影响规律及其机理,以气溶胶化丁基黄药为捕收剂,进行了黄铁矿单矿物浮选实验,采用电导率、红外光谱及XPS等手段对经气溶胶处理前后的丁基黄药作用的黄铁矿进行表征。结果表明,气溶胶化丁基黄药可显著提高丁基黄药中的有效成分双黄药分子的含量以及黄铁矿的浮选效果,在丁基黄药质量浓度为15 mg/L时,黄铁矿的回收率为57.20%,与未处理相比,黄铁矿回收率提高16.47百分点。气溶胶化处理丁基黄药可以提高溶液中的溶解氧浓度,溶解氧既可促进溶液中双黄药的生成,强化丁基黄药对黄铁矿的捕收效果,又可影响黄铁矿的氧化反应程度,使黄铁矿表面矿物组成发生变化,并且疏水性单质硫的比例增加了7.61百分点,有利于黄铁矿上浮。此外,由于气溶胶化丁基黄药在黄铁矿表面吸附量增大,黄铁矿表面所含疏水基团−C4H9增多,提高了黄铁矿的疏水性。研究结果对气溶胶浮选技术在浮选领域应用有一定的参考意义。
Abstract:In order to study the influence and mechanism of aerosol treatment of butyl xanthate on the flotation effect of pyrite, the single mineral flotation experiment of pyrite was carried out with aerosolized butyl xanthate as collector. The pyrite treated by butyl xanthate before and after aerosol treatment was characterized by conductivity, infrared spectroscopy and XPS. The results showed that the aerosolized butyl xanthate could significantly increase the content of the active ingredient dixanthogen in butyl xanthate and the flotation effect of pyrite. The recovery of pyrite was 57.20% at the mass concentration of butyl xanthate of 15 mg/L, which could increase the recovery of pyrite by 16.47 percentage points compared with that of untreated. Aerosolization treatment of butyl xanthate can increase the dissolved oxygen concentration in the butyl xanthate solution. Dissolved oxygen not only promote, the formation of dixanthogen in the solution, but also enhanced the collection effect of butyl xanthate on pyrite. It also affected the degree of oxidation reaction of pyrite, and the proportion of hydrophobic elemental sulfur increased 7.61%, which was beneficial to improve the floatability of pyrite. In addition, due to the increase of the adsorption amount of aerosolized butyl xanthate on the surface of pyrite, the hydrophobic group −C4H9 on the surface of pyrite increased, which improved the hydrophobicity of pyrite. The research provides a reference for aerosol flotation technology in the field of flotation.
-
Key words:
- aerosolization /
- butyl xanthate /
- strengthening /
- pyrite /
- flotation
-
-
表 1 黄铁矿表面原子个数相对含量
Table 1. Relative content of atomic number on talc surface
黄铁矿样品 C/% O/% S/% Fe/% A 68.54 12.32 13.47 2.56 B 60.15 14.58 20.49 4.79 表 2 峰拟合各形态S的峰面积
Table 2. Peak fitting the peak area of each form of S
样品 峰面积 Fe−S(S 2p 3/2) S=O(S 2p 3/2) S−S(S 2p 1/2) S=O(S 2p 1/2) A 8092.41 780.66 5595.80 398.78 B 11444.85 616.73 5310.88 315.03 表 3 分峰拟合各形态S的分布比例
Table 3. Peak fitting distribution ratio of each form of S
样品 相对比例/% Fe−S S−S S=O A 54.43 37.64 7.93 B 64.70 30.03 5.27 -
[1] 毕云霄, 余攀, 丁湛, 等. 黄铁矿浮选抑制剂的研究进展[J]. 矿产保护与利用, 2020, 40(4): 157−166.
BI Y X, YU P, DING Z, et al. The development of research on the pyrite flotation depressants[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 157−166.
[2] ARSLAN Y U, JEFFERSON M, MORAR C C, et al. Pathway to prediction of pyrite floatability from copper ore geological domain data[J]. Minerals, 2023, 13(6): 801. doi: 10.3390/min13060801
[3] 于宏东, 孙传尧. 不同成因类型黄铁矿的浮游特性[J]. 有色金属工程, 2009, 61(3): 111−115. doi: 10.3969/j.issn.2095-1744.2009.03.028
YU H D, SUN C Y. Flotation characteristics of different geo−genetic type pyrite[J]. Nonferrous Metals Engineering, 2009, 61(3): 111−115. doi: 10.3969/j.issn.2095-1744.2009.03.028
[4] 梁爽, 路亮, 张行荣. 有机抑制剂在黄铁矿浮选中的研究进展[J]. 中国矿业, 2020, 29(S2): 300−302+307.
LIANG S, LU L, ZHANG X R. Research on organic depressors of pyrite flotation[J]. China Mining Magazine, 2020, 29(S2): 300−302+307.
[5] 赵连兵, 先永骏, 文书明, 等. 黄铁矿的抑制及活化分选研究进展[J]. 矿产保护与利用, 2020, 40(2): 74−81.
ZHAO L B, XIAN Y J, WEN S M, et al. Research development of depression and activation separation of pyrite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 74−81.
[6] 李诗浩, 马强, 王龙, 等. 黄铁矿浮选活化机理研究进展[J]. 矿产综合利用, 2023(2): 124−130+140. doi: 10.3969/j.issn.1000-6532.2023.02.021
LI S H, MA Q, WANG L, et al. Present situation and research progress of comprehensive utilization of low grade zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2023(2): 124−130+140. doi: 10.3969/j.issn.1000-6532.2023.02.021
[7] 苏超, 申培伦, 李佳磊, 等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(4): 1921−1929.
SU C, SHEN P L, LI J L, et al. A review on depression and derepression of pyrite flotation[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1921−1929.
[8] 刘向, 李祚毕, 李展, 等. 黄铁矿低温浮选试验及机理分析[J]. 矿产保护与利用, 2019, 39(4): 115−120.
LIU X, LI Z B, LI Z, et al. Study and mechanism analysis on the flotation of pyrite in low temperature[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 115−120.
[9] 赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3): 27−38.
ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27−38.
[10] 王明星, 张仁健. 大气气溶胶研究的前沿问题[J]. 气候与环境研究, 2001(1): 119−124. doi: 10.3878/j.issn.1006-9585.2001.01.14
WANG M X, ZHANG R J. Frontier of atmospheric aerosols researches[J]. Climatic and Environmental Research, 2001(1): 119−124. doi: 10.3878/j.issn.1006-9585.2001.01.14
[11] 徐涛, 孙春宝, 阎志强, 等. 气溶胶浮选技术及其应用现状[J]. 中国矿业, 2011, 20(8): 75−78. doi: 10.3969/j.issn.1004-4051.2011.08.022
XU T, SUN C B, YAN Z Q, et al. Aerosol flotation technology and its application status[J]. China Mining Magazine, 2011, 20(8): 75−78. doi: 10.3969/j.issn.1004-4051.2011.08.022
[12] 徐涛, 孙春宝, 刘行刚, 等. 低品位钼矿煤油气溶胶加药浮选规律的研究[J]. 中国矿业, 2012, 21(12): 91−95. doi: 10.3969/j.issn.1004-4051.2012.12.024
XU T, SUN C B, LIU X G, et al. The effect of flotation condition on the kerosene aerosol dosing flotation of low grade molybdenum ore[J]. China Mining Magazine, 2012, 21(12): 91−95. doi: 10.3969/j.issn.1004-4051.2012.12.024
[13] XUN T, SUN C B. Aerosol flotation of low−grade refractory molybdenum ores[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(12): 1077−1082. doi: 10.1007/s12613-012-0673-4
[14] 刘行刚, 孙春宝, 徐涛. 某低品位钼矿煤油气溶胶浮选特性的研究[J]. 中国矿业, 2013, 22(12): 109−112. doi: 10.3969/j.issn.1004-4051.2013.12.025
LIU X G, SUN C B, XU T. Study on characteristics of kerosene aerosol flotation for a low−grade molybdenum ore[J]. China Mining Magazine, 2013, 22(12): 109−112. doi: 10.3969/j.issn.1004-4051.2013.12.025
[15] 辽宁省冶金研究所气溶胶试验小组. 气溶胶浮选特性的探讨[J]. 有色金属(冶炼部分), 1976(3): 31−36+44.
Liaoning Provincial Metallurgical Research Institute Aerosol Test Group. Discussion on aerosol flotation characteristics[J]. Nonferrous Metals(Extractive Metallurgy), 1976(3): 31−36+44.
[16] 春江, 王瑾萱, 徐晨, 等. 液滴撞击超亲水表面的最大铺展直径预测模型[J]. 物理学报, 2021, 70(10): 248−258.
CHUN J, WANG J X, XU C, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces[J]. Acta Physica Sinica, 2021, 70(10): 248−258.
[17] 姚夏妍, 赵芸芸, 鲁兴武, 等. 强磁场作用下磁场梯度力对铜电解过程的影响[J]. 中国有色金属学报, 2020, 30(11): 2695−2705. doi: 10.11817/j.ysxb.1004.0609.2020-37686
YAO X Y, ZHAO Y Y, LU X W, et al. Effect of gradient force of magnetic field on copper electrolysis process under strong magnetic field[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(11): 2695−2705. doi: 10.11817/j.ysxb.1004.0609.2020-37686
[18] 姚夏妍, 汪友元, 鲁兴武, 等. 磁场效应强化湿法冶金的现状及前景[J]. 中国有色冶金, 2019, 48(1): 8−13.
YAO X Y, WANG Y Y, LU X W, et al. Current situation and Prospect of magnetic field effect enhanced hydrometallurgy[J]. China Nonferrous Metallurgy, 2019, 48(1): 8−13.
[19] 刘浩, 朱一民, 马艺闻, 等. 氰化尾渣中黄铁矿与闪锌矿的浮选回收技术研究[J]. 矿产综合利用, 2017(2): 99−104. doi: 10.3969/j.issn.1000-6532.2017.02.023
LIU H, ZHU Y M, MA Y W, et al. Study on flotation and recovery technology for pyrite and sphalerite in cyanidation tailings[J]. Multipurpose Utilization of Mineral Resources, 2017(2): 99−104. doi: 10.3969/j.issn.1000-6532.2017.02.023
[20] DENG Z B, CHENG W L, TANG Y, et al. Adsorption mechanism of copper xanthate on pyrite srfaces[J]. Physicochemical Problems of Mineral Processing, 2021, 57(3): 46–60.
[21] 徐涛, 孙春宝, 米丽平, 等. 利用气溶胶浮选技术提高某铜钼矿混合浮选钼回收率[J]. 北京科技大学学报, 2012, 34(9): 982−986.
XU T, SUN C B, MI L P, et al. Improving molybdenum recovery in copper−molybdenum roughing by aerosol flotation technology[J]. Chinese Journal of Engineering, 2012, 34(9): 982−986.
[22] ENG Y, GRANO S. Effect of grinding media on the activation of pyrite flotation[J]. Minerals Engineering, 2010, 23(8): 600−605. doi: 10.1016/j.mineng.2010.02.003
[23] EJTEMAEI M, NGUYEN A V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals Engineering, 2017, 100: 223−232. doi: 10.1016/j.mineng.2016.11.005
[24] BIN L, NIE W L, DONG J S. Effect of lead ions on the sulfidization flotation of smithsonite using sodium butyl xanthate as a collector[J]. Minerals Engineering, 2022, 185: 107710. doi: 10.1016/j.mineng.2022.107710
[25] SUN Q Y, YIN W Z, CAO S H, et al. Adsorption kinetics and thermodynamics of sodium butyl xanthate onto bornite in flotation[J]. Journal of Central South University, 2019, 26(11): 2998−3007.
[26] ZHANG Y H, CAO Z, SUN C Y. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces[J]. Journal of Molecular Structure, 2013, 1048(11): 434−440.
[27] ZHENG X, LIU L, NIE Z, et al. The differential adsorption mechanism of hexahydrated iron and hydroxyl irons on a pyrite (100) surface: A DFT study and XPS characterization[J]. Minerals Engineering, 2019, 138: 215−225. doi: 10.1016/j.mineng.2019.05.006
[28] DENG Z B, CHENG W L, TANG Y, et al. Adsorption mechanism of copper xanthate on pyrite surfaces[J]. Physicochemical Problems of Mineral Processing, 2021, 57(3): 46−60. doi: 10.37190/ppmp/135131
[29] FENG B, FENG Q, LU Y. The effect of lizardite surface characteristics on pyrite flotation[J]. Applied Surface Science, 2012, 259: 153−158. doi: 10.1016/j.apsusc.2012.07.010
[30] RABIEH A, ALBIJANIC B, EKSTEEN J J. A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations[J]. Minerals Engineering, 2016, 94: 21−28. doi: 10.1016/j.mineng.2016.04.012
-