某高磷铁矿悬浮焙烧—磁选—浸出提铁降磷实验研究

王绍兴, 宁国栋, 刘应志, 李艳军. 某高磷铁矿悬浮焙烧—磁选—浸出提铁降磷实验研究[J]. 矿产保护与利用, 2024, 44(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2024.01.011
引用本文: 王绍兴, 宁国栋, 刘应志, 李艳军. 某高磷铁矿悬浮焙烧—磁选—浸出提铁降磷实验研究[J]. 矿产保护与利用, 2024, 44(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2024.01.011
WANG Shaoxing, NING Guodong, LIU Yingzhi, LI Yanjun. Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2024.01.011
Citation: WANG Shaoxing, NING Guodong, LIU Yingzhi, LI Yanjun. Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2024.01.011

某高磷铁矿悬浮焙烧—磁选—浸出提铁降磷实验研究

详细信息
    作者简介: 王绍兴(1989—),男,硕士研究生,主要从事难选铁矿选冶联合等方面研究
    通讯作者: 刘应志(1996—),男,硕士研究生,主要从事难选铁矿资源综合利用等方面研究,E-mail:1369269452@qq.com
  • 中图分类号: TD952.1;TD924

Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process

More Information
  • 针对高磷铁矿因铁矿物与磷矿物共生关系复杂、常规选矿方法难以高效利用的特点,提出了焙烧—浸出的提铁降磷技术。对阿尔及利亚TFe品位为60.81%、FeO含量为14.92%、P含量为0.71%的某高磷铁矿,采用悬浮焙烧(氧化焙烧—磁化焙烧)—磁选—浸出工艺开展了提铁脱磷实验研究,在氧化温度1 050 ℃、还原温度520 ℃、还原时间25 min、H2体积浓度50%的磁化焙烧工艺条件下,获得了TFe品位65.50%、TFe回收率96.31%、P含量0.16%的铁精矿指标,磷脱除率77.46%。实验研究结果可为高磷铁矿提铁降磷提供指导。

  • 加载中
  • 图 1  实验过程示意图

    Figure 1. 

    图 2  氧化温度对选别产品指标的影响

    Figure 2. 

    图 3  还原温度对选别产品指标的影响

    Figure 3. 

    图 4  还原时间对选别产品影响

    Figure 4. 

    图 5  还原气体积浓度对选别产品影响

    Figure 5. 

    图 6  磨矿细度对选别产品影响

    Figure 6. 

    图 7  全流程实验结果

    Figure 7. 

    图 8  焙烧前后产品XRD分析结果

    Figure 8. 

    表 1  实验样品化学成分分析结果

    Table 1.  Results of chemical composition analysis of test samples /%

    组分TFeFeOSiO2Al2O3CaOMgOPS烧失量
    含量60.3814.923.723.621.280.420.710.023.31
    下载: 导出CSV

    表 2  实验样品铁化学物相分析结果

    Table 2.  Results of iron chemical phase analysis of test samples /%

    铁物相磁性铁
    中铁
    碳酸铁
    中铁
    赤/褐铁
    中铁
    硫化铁
    中铁
    硅酸铁
    中铁
    TFe
    含量49.580.989.770.130.0360.38
    分布率82.111.6216.180.220.05100.00
    下载: 导出CSV

    表 3  实验样品粒度分析结果

    Table 3.  Particle size analysis results of test samples /%

    粒级/mm产率负累积TFe品位TFe分布率TFe负累积分布率P含量P分布率P负累积分布率
    +0.1513.44100.0058.3512.90100.000.7213.71100.00
    −0.15+0.07414.9386.5658.6414.4087.100.7816.5086.29
    −0.074+0.0439.1071.6355.688.3372.700.9011.6069.78
    −0.043+0.0383.4162.5361.273.4464.370.864.1658.18
    −0.038+0.0304.8759.1262.645.0260.930.815.5954.02
    −0.03054.2454.2462.6755.9155.910.6348.4248.42
    合计100.0060.81100.000.71100.00
    下载: 导出CSV

    表 4  产品化学组成分析结果

    Table 4.  Results of chemical composition analysis of products /%

    名称TFeFeOSiO2Al2O3CaOMgOPS烧失量
    焙烧产品62.9225.023.843.651.400.270.740.0190.29
    磁选精矿63.6526.313.753.671.160.320.690.0060.38
    浸出精矿65.5024.393.783.510.120.250.160.0020.32
    下载: 导出CSV

    表 5  产品铁化学物相分析结果

    Table 5.  Results of iron chemical phase analysis of products /%

    产品铁物相磁性铁
    中铁
    碳酸铁
    中铁
    赤/褐铁
    中铁
    硫化铁
    中铁
    硅酸铁
    中铁
    TFe
    焙烧产品含量61.770.310.060.230.3762.92
    分布率98.170.490.100.370.59100.00
    磁选精矿含量62.640.260.060.250.3763.65
    分布率98.410.410.090.390.58100.00
    下载: 导出CSV
  • [1]

    白春霞, 李宏静. 高磷鲕状赤铁矿脱磷选矿工艺现状分析[J]. 现代矿业, 2021, 37(1): 117−119+125.

    BAI C X, LI H J. Research status analysis of dephosphorization mineral processing of high phosphorus oolitic hematite[J]. Modern Mining, 2021, 37(1): 117−119+125.

    [2]

    丁湛, 文书明, 李春龙, 等. 铁矿石脱磷硫工艺现状及同步脱除新方法[J]. 矿产综合利用, 2020, 3(3): 56−62+32.

    DING Z, WEN S M, LI C L, et al. Current status of iron ore dephosphorization and desulphurization process and a new method for simultaneous removal[J]. Multipurpose Utilization of Mineral Resources, 2020, 3(3): 56−62+32.

    [3]

    许言, 孙体昌, 杨志超, 等. 尼日利亚某高磷铁矿石工艺矿物学研究[J]. 中国矿业, 2012, 21(4): 89−93.

    XU Y, SUN T C, YANG Z H, et al. Process mineralogy study on some high phosphorous iron ore in Nigeria[J]. China Mining Magazine, 2012, 21(4): 89−93.

    [4]

    刘东泉, 李文博, 韩跃新, 等. 阿尔及利亚某高磷鲕状赤铁矿工艺矿物学研究[J]. 矿冶工程, 2020, 40(4): 65−68+74. doi: 10.3969/j.issn.0253-6099.2020.04.016

    LIU D Q, LI W B, HAN Y X, et al. Process mineralogy of high−phosphorus oolitic hematite from Algeria[J]. Mining and Metallurgical Engineering, 2020, 40(4): 65−68+74. doi: 10.3969/j.issn.0253-6099.2020.04.016

    [5]

    齐冰力, 路明, 何志军, 等. SiO2对高磷鲕状赤铁矿碳热还原过程中铁磷物相转变规律研究[J]. 矿产保护与利用, 2022, 42(5): 95−103.

    QI B L, LU M, HE Z J, et al. Study on phase transformation of iron and phosphorus by SiO2, during carbon thermareduction of high−phosphorus oolitic hematite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 95−103.

    [6]

    吴世超, 孙体昌, 寇珏, 等. 组合脱磷剂对高磷铁矿还原焙烧−磁选的影响[J]. 东北大学学报(自然科学版), 2022, 43(3): 423−430.

    WU S C, SUN T C, KOU J, et al. Effects of combined dephosphorization agents on reduction roasting−magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 423−430.

    [7]

    XU C Y, SUN T C, KOU J, et al. Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11): 2806−2812. doi: 10.1016/S1003-6326(11)61536-7

    [8]

    吴世超, 孙体昌, 寇珏. CaCO3和Na2CO3在高磷鲕状铁矿氧化焙烧−气基还原中的作用[J]. 中南大学学报(自然科学版), 2022, 53(4): 1157−1166.

    WU S C, SUN T C, KOU J. The function of CaCO3 and Na2CO3 in the oxidation roasting and gas−based reduction forhigh phosphorus oolitic iron ore[J]. Journal of Central South University(Science and Technology), 2022, 53(4): 1157−1166.

    [9]

    吴世超, 高瑞琢, 孙体昌, 等. 某高磷铁矿氧化焙烧−气基还原−磁选研究[J]. 矿产综合利用. 2024, 45(1): 144−148 doi: 10.3969/j.issn.1000-6532.2024.01.018.

    WU S C, GAO R Z, SUN T C, et al. Study on oxidation roasting, gas−based reduction followed bymagnetic separationof ahigh phosphorus lron ore [J]. Multipurpose Utilization of Mineral Resources. 2024, 45(1): 144−148 doi: 10.3969/j.issn.1000-6532.2024.01.018.

    [10]

    李育彪, 龚文琪, 辛桢凯, 等. 鄂西某高磷鲕状赤铁矿磁化焙烧及浸出除磷试验[J]. 金属矿山, 2010, 5(5): 64−67.

    LI Y B, GONG W Q, XIN Z Q, et al. Research on magnetic roasting and leaching dephosphorization of high−phosphorus oolitie hematite in Western Hubei[J]. Metal Mine, 2010, 5(5): 64−67.

    [11]

    SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot−scale study[J]. Journal of Cleaner Production, 2020, 261: 1−9.

    [12]

    TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J]. Resources Conservation and Recycling, 2021, 172: 1−10.

    [13]

    YUAN S, WANG R F, GAO P, et al. Suspension magnetization roasting on waste ferromanganese ore: a semi−industrial test for efficient recycling of value minerals[J]. Powder Technology, 2022, 396: 80−91. doi: 10.1016/j.powtec.2021.10.048

    [14]

    YUAN S, ZHOU W T, HAN Y X, et al. Efficient enrichment of low−grade refractory rhodochrosite by preconcentration−neutral suspension roasting−magnetic separation process[J]. Powder Technology, 2020, 361: 529−539. doi: 10.1016/j.powtec.2019.11.082

    [15]

    ZHANG X L, HAN Y X, SUN Y S, et al. Innovative utilization of refractory iron ore via suspension magnetization roasting: a pilot−scale study[J]. Powder Technology, 2019, 352: 16−24. doi: 10.1016/j.powtec.2019.04.042

    [16]

    CHENG C Y, MISRA V N, CLOUGH J, et al. Dephosphorisation of western Australian iron ore by hydrometallurgical process[J]. Minerals Engineering, 1999, 12(9): 1083−1092. doi: 10.1016/S0892-6875(99)00093-X

    [17]

    WU S, SUN T, KOU J, et al. A new iron recovery and dephosphorization approach from high−phosphorus oolitic iron ore via oxidation roasting−gas−based reduction and magnetic separation process[J]. Powder Technology, 2023, 413: 1−15.

    [18]

    SUN Y, ZHANG X, HAN Y, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: a pilot−scale study[J]. Powder Technology, 2020, 361: 571−580. doi: 10.1016/j.powtec.2019.11.076

  • 加载中

(8)

(5)

计量
  • 文章访问数:  313
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2023-08-08
刊出日期:  2024-02-15

目录