Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process
-
摘要:
针对高磷铁矿因铁矿物与磷矿物共生关系复杂、常规选矿方法难以高效利用的特点,提出了焙烧—浸出的提铁降磷技术。对阿尔及利亚TFe品位为60.81%、FeO含量为14.92%、P含量为0.71%的某高磷铁矿,采用悬浮焙烧(氧化焙烧—磁化焙烧)—磁选—浸出工艺开展了提铁脱磷实验研究,在氧化温度1 050 ℃、还原温度520 ℃、还原时间25 min、H2体积浓度50%的磁化焙烧工艺条件下,获得了TFe品位65.50%、TFe回收率96.31%、P含量0.16%的铁精矿指标,磷脱除率77.46%。实验研究结果可为高磷铁矿提铁降磷提供指导。
Abstract:In response to the characteristics of high-phosphorus iron ore, which the complex symbiotic relationship between iron minerals and phosphate minerals in high-phosphorus iron ore and the difficulty in efficient utilization through conventional beneficiation methods. The roasting -leaching technology for iron extraction and phosphorus reduction was proposed with a view to achieving efficient utilization of high-phosphorus iron ore. This paper investigated a high-phosphorus certain iron ore with a TFe grade 60.81%, FeO content14.92%, and P content 0.71% extracted from Algeria. The experimental study on iron extraction and dephosphorization was carried out by oxidizing roasting-magnetization roasting-magnetic separation-leaching process. The magnetic roasting process conditions of oxidation temperature 1 050 °C, reduction temperature 520 °C, reduction time 25 min and H2 concentration 50% were determined. The iron concentrate indexes of total Fe grade 65.50%, total Fe recovery 96.31% and P content 0.16% were obtained, which 77.46% of P removed. The experimental results offer guidance for iron extraction and dephosphorization of iron ore in Algeria.
-
Key words:
- high−phosphorus iron ore /
- oxidizing roasting /
- magnetic roasting /
- leaching
-
-
表 1 实验样品化学成分分析结果
Table 1. Results of chemical composition analysis of test samples
/% 组分 TFe FeO SiO2 Al2O3 CaO MgO P S 烧失量 含量 60.38 14.92 3.72 3.62 1.28 0.42 0.71 0.02 3.31 表 2 实验样品铁化学物相分析结果
Table 2. Results of iron chemical phase analysis of test samples
/% 铁物相 磁性铁
中铁碳酸铁
中铁赤/褐铁
中铁硫化铁
中铁硅酸铁
中铁TFe 含量 49.58 0.98 9.77 0.13 0.03 60.38 分布率 82.11 1.62 16.18 0.22 0.05 100.00 表 3 实验样品粒度分析结果
Table 3. Particle size analysis results of test samples
/% 粒级/mm 产率 负累积 TFe品位 TFe分布率 TFe负累积分布率 P含量 P分布率 P负累积分布率 +0.15 13.44 100.00 58.35 12.90 100.00 0.72 13.71 100.00 −0.15+0.074 14.93 86.56 58.64 14.40 87.10 0.78 16.50 86.29 −0.074+0.043 9.10 71.63 55.68 8.33 72.70 0.90 11.60 69.78 −0.043+0.038 3.41 62.53 61.27 3.44 64.37 0.86 4.16 58.18 −0.038+0.030 4.87 59.12 62.64 5.02 60.93 0.81 5.59 54.02 −0.030 54.24 54.24 62.67 55.91 55.91 0.63 48.42 48.42 合计 100.00 60.81 100.00 0.71 100.00 表 4 产品化学组成分析结果
Table 4. Results of chemical composition analysis of products
/% 名称 TFe FeO SiO2 Al2O3 CaO MgO P S 烧失量 焙烧产品 62.92 25.02 3.84 3.65 1.40 0.27 0.74 0.019 0.29 磁选精矿 63.65 26.31 3.75 3.67 1.16 0.32 0.69 0.006 0.38 浸出精矿 65.50 24.39 3.78 3.51 0.12 0.25 0.16 0.002 0.32 表 5 产品铁化学物相分析结果
Table 5. Results of iron chemical phase analysis of products
/% 产品 铁物相 磁性铁
中铁碳酸铁
中铁赤/褐铁
中铁硫化铁
中铁硅酸铁
中铁TFe 焙烧产品 含量 61.77 0.31 0.06 0.23 0.37 62.92 分布率 98.17 0.49 0.10 0.37 0.59 100.00 磁选精矿 含量 62.64 0.26 0.06 0.25 0.37 63.65 分布率 98.41 0.41 0.09 0.39 0.58 100.00 -
[1] 白春霞, 李宏静. 高磷鲕状赤铁矿脱磷选矿工艺现状分析[J]. 现代矿业, 2021, 37(1): 117−119+125.
BAI C X, LI H J. Research status analysis of dephosphorization mineral processing of high phosphorus oolitic hematite[J]. Modern Mining, 2021, 37(1): 117−119+125.
[2] 丁湛, 文书明, 李春龙, 等. 铁矿石脱磷硫工艺现状及同步脱除新方法[J]. 矿产综合利用, 2020, 3(3): 56−62+32.
DING Z, WEN S M, LI C L, et al. Current status of iron ore dephosphorization and desulphurization process and a new method for simultaneous removal[J]. Multipurpose Utilization of Mineral Resources, 2020, 3(3): 56−62+32.
[3] 许言, 孙体昌, 杨志超, 等. 尼日利亚某高磷铁矿石工艺矿物学研究[J]. 中国矿业, 2012, 21(4): 89−93.
XU Y, SUN T C, YANG Z H, et al. Process mineralogy study on some high phosphorous iron ore in Nigeria[J]. China Mining Magazine, 2012, 21(4): 89−93.
[4] 刘东泉, 李文博, 韩跃新, 等. 阿尔及利亚某高磷鲕状赤铁矿工艺矿物学研究[J]. 矿冶工程, 2020, 40(4): 65−68+74. doi: 10.3969/j.issn.0253-6099.2020.04.016
LIU D Q, LI W B, HAN Y X, et al. Process mineralogy of high−phosphorus oolitic hematite from Algeria[J]. Mining and Metallurgical Engineering, 2020, 40(4): 65−68+74. doi: 10.3969/j.issn.0253-6099.2020.04.016
[5] 齐冰力, 路明, 何志军, 等. SiO2对高磷鲕状赤铁矿碳热还原过程中铁磷物相转变规律研究[J]. 矿产保护与利用, 2022, 42(5): 95−103.
QI B L, LU M, HE Z J, et al. Study on phase transformation of iron and phosphorus by SiO2, during carbon thermareduction of high−phosphorus oolitic hematite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 95−103.
[6] 吴世超, 孙体昌, 寇珏, 等. 组合脱磷剂对高磷铁矿还原焙烧−磁选的影响[J]. 东北大学学报(自然科学版), 2022, 43(3): 423−430.
WU S C, SUN T C, KOU J, et al. Effects of combined dephosphorization agents on reduction roasting−magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 423−430.
[7] XU C Y, SUN T C, KOU J, et al. Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11): 2806−2812. doi: 10.1016/S1003-6326(11)61536-7
[8] 吴世超, 孙体昌, 寇珏. CaCO3和Na2CO3在高磷鲕状铁矿氧化焙烧−气基还原中的作用[J]. 中南大学学报(自然科学版), 2022, 53(4): 1157−1166.
WU S C, SUN T C, KOU J. The function of CaCO3 and Na2CO3 in the oxidation roasting and gas−based reduction forhigh phosphorus oolitic iron ore[J]. Journal of Central South University(Science and Technology), 2022, 53(4): 1157−1166.
[9] 吴世超, 高瑞琢, 孙体昌, 等. 某高磷铁矿氧化焙烧−气基还原−磁选研究[J]. 矿产综合利用. 2024, 45(1): 144−148 doi: 10.3969/j.issn.1000-6532.2024.01.018.
WU S C, GAO R Z, SUN T C, et al. Study on oxidation roasting, gas−based reduction followed bymagnetic separationof ahigh phosphorus lron ore [J]. Multipurpose Utilization of Mineral Resources. 2024, 45(1): 144−148 doi: 10.3969/j.issn.1000-6532.2024.01.018.
[10] 李育彪, 龚文琪, 辛桢凯, 等. 鄂西某高磷鲕状赤铁矿磁化焙烧及浸出除磷试验[J]. 金属矿山, 2010, 5(5): 64−67.
LI Y B, GONG W Q, XIN Z Q, et al. Research on magnetic roasting and leaching dephosphorization of high−phosphorus oolitie hematite in Western Hubei[J]. Metal Mine, 2010, 5(5): 64−67.
[11] SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot−scale study[J]. Journal of Cleaner Production, 2020, 261: 1−9.
[12] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J]. Resources Conservation and Recycling, 2021, 172: 1−10.
[13] YUAN S, WANG R F, GAO P, et al. Suspension magnetization roasting on waste ferromanganese ore: a semi−industrial test for efficient recycling of value minerals[J]. Powder Technology, 2022, 396: 80−91. doi: 10.1016/j.powtec.2021.10.048
[14] YUAN S, ZHOU W T, HAN Y X, et al. Efficient enrichment of low−grade refractory rhodochrosite by preconcentration−neutral suspension roasting−magnetic separation process[J]. Powder Technology, 2020, 361: 529−539. doi: 10.1016/j.powtec.2019.11.082
[15] ZHANG X L, HAN Y X, SUN Y S, et al. Innovative utilization of refractory iron ore via suspension magnetization roasting: a pilot−scale study[J]. Powder Technology, 2019, 352: 16−24. doi: 10.1016/j.powtec.2019.04.042
[16] CHENG C Y, MISRA V N, CLOUGH J, et al. Dephosphorisation of western Australian iron ore by hydrometallurgical process[J]. Minerals Engineering, 1999, 12(9): 1083−1092. doi: 10.1016/S0892-6875(99)00093-X
[17] WU S, SUN T, KOU J, et al. A new iron recovery and dephosphorization approach from high−phosphorus oolitic iron ore via oxidation roasting−gas−based reduction and magnetic separation process[J]. Powder Technology, 2023, 413: 1−15.
[18] SUN Y, ZHANG X, HAN Y, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: a pilot−scale study[J]. Powder Technology, 2020, 361: 571−580. doi: 10.1016/j.powtec.2019.11.076
-