我国铌矿资源概况及选矿技术进展

尹兆波, 高利坤, 饶兵. 我国铌矿资源概况及选矿技术进展[J]. 矿产保护与利用, 2024, 44(1): 115-125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013
引用本文: 尹兆波, 高利坤, 饶兵. 我国铌矿资源概况及选矿技术进展[J]. 矿产保护与利用, 2024, 44(1): 115-125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013
YIN Zhaobo, GAO Likun, RAO Bing. Overview of Niobium Resources and Progress in Mineral Processing Technology in China[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 115-125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013
Citation: YIN Zhaobo, GAO Likun, RAO Bing. Overview of Niobium Resources and Progress in Mineral Processing Technology in China[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 115-125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013

我国铌矿资源概况及选矿技术进展

详细信息
    作者简介: 尹兆波(1998—),男,山西太原人,在读硕士研究生,研究方向为资源综合利用,E-mail:2934737162@qq.com
    通讯作者: 高利坤(1973—),男,云南曲靖人,博士,教授,主要从事选矿工艺及理论、资源综合利用、矿物材料等方向研究,E-mail:20030032@kust.edu.cn
  • 中图分类号: TD955

Overview of Niobium Resources and Progress in Mineral Processing Technology in China

More Information
  • 我国铌矿资源储量丰富,但矿石品位低,且共伴生有多种有价金属,可供经济开采的铌矿资源稀缺,对外依存度超过90%。分析了全球铌资源概况及供需关系,简要阐述了铌的性质、用途、分布特征以及矿床类型,归纳总结了重选工艺、磁选工艺、浮选工艺、焙烧—浸出工艺以及联合工艺等铌矿选矿工艺研究进展,并对其进行了对比分析。最后,展望了选铌工艺的研究方向,并提出了保障我国铌资源稳定供应的对策。

  • 加载中
  • 图 1  2015年—2021年我国铌铁进口量及进口额统计(数据来源:中国海关,华经产业研究院)

    Figure 1. 

    表 1  常见主要铌矿物

    Table 1.  Main mineral of common niobium ores

    矿物名称化学式Nb2O5含量/%成因产状
    铌铁矿(Fe,Mn)(Nb,Ta)2O678.72组成花岗伟晶岩的一种副矿物,碳酸岩中很少见,砂矿中的一种碎屑矿物
    钽铁矿(Fe,Mn)(Nb,Ta)2O62~40花岗伟晶岩形成初期的成分,一种附属矿物
    烧绿石(Na,Ca)2Nb2O6(O,OH,F)75.12产于基性岩、伟晶岩或碳酸岩中
    易解石(Ce,Th)(Ti,Nb)2O623.8~32.5主要产于碱性岩及与碱性岩有关的矿床中
    重钽铁矿(Fe,Mn)(Ta,Nb)2O61.33产于花岗伟晶岩中的罕见钽矿物
    钽锰矿(Ta,Nb,Sn,Mn,Fe)4O88.30花岗伟晶岩的主要组分,也发现于冲击矿床碎屑中
    锡锰钽矿(Ta,Nb,Sn,Mn,Fe)O28.37只发现于花岗伟晶岩中,矿物形成条件狭窄
    褐钇铌矿Y(Nb,Ta)O433.64~47产于花岗岩、花岗伟晶岩中
    铈铌钙钛矿(Ce,La,Na,Ca,Sr)(Ti,Nb)O316.15产于碱性岩及伟晶岩中
    钠铌矿NaNbO381.09产于碱性岩与碳酸岩的接触带
    黑稀金矿(Y,Ca,Ce,U,Th)(Nb,Ti,Ta)2O647.43产于花岗伟晶岩中
    铌铁金红石Fex(Nb,Ta)2x4Ti1−xO227.9常产于花岗伟晶岩、正长伟晶岩和碳酸岩中
    数据来源:英国地质调查局(BGS),2011。
    下载: 导出CSV

    表 2  2022年世界各国铌矿储量及产量

    Table 2.  World niobium ore reserves and production in 2022

    国家储量/t储量占比/%产量/t产量占比/%
    巴西16 000 00089.8471 00089.93
    加拿大1 600 0008.986 5008.23
    美国210 0001.18
    刚果(金)6000.76
    俄罗斯4500.57
    卢旺达2100.27
    其他国家1900.24
    合计17 810 000100.0078 950100.00
    注:数据来源于美国地质调查局(USGS),2023。
    下载: 导出CSV

    表 3  2022年我国铌钽矿资源储量

    Table 3.  Proven resources of niobium-tantalum ore in China from 2022

    地区铌钽矿及铌钽氧化物/t存量占比/%
    2021年2022年2021年2022年
    内蒙古245 608.08230 414.9979.3878.76
    江西39 986.5039 420.8912.9213.48
    四川10 332.0412 713.963.344.35
    广西 7 472.577 472.572.412.55
    湖南2 372.70614.600.770.21
    福建1 537.45255.480.490.09
    云南980.651 083.790.320.37
    广东615.280.000.200.00
    河南312.92312.920.100.11
    新疆208.70251.380.070.08
    全国309 426.89292 540.58100.00100.00
    数据来源:自然资源部数据库,全国矿产资源储量统计表(公开),2023。
    下载: 导出CSV

    表 4  各种选铌工艺对比分析[39]

    Table 4.  Comparative analysis of various niobium mineral processes

    选矿方法工艺优缺点
    重选粒度粗可采用跳汰机、螺旋选矿机或旋转螺旋粗选,粗精矿进入摇床精选;粒度细可采用螺旋溜槽或摇床粗选,粗精矿用皮带溜槽和矿泥摇床进行精选优点:相较于其他方法投资少,成本低。
    缺点:(1)磨矿阶段过磨,矿物粒度变细影响选别。
    (2)摇床时,物料会出现分级,解离矿物无法完全回收。
    (3)对于矿泥的选别效率低。
    (4)选别过程产生的微细颗粒及溢流矿泥流失会
    导致铌的损失
    磁选钽铌矿、铌铁矿、铌铁金红石、电气石等含铌矿物
    具有磁性,比磁化系数因其含铁量不同而变化,
    在不同磁场强度下,分离矿物
    优点:(1)可高效分离比磁化系数差异较大的铌矿物及脉石矿物。
    (2)可对矿物预先分选,实现金属铌的富集。
    缺点:工艺单一,对于非磁性矿物缺乏选别效果
    浮选添加捕收剂可选择性地改变矿物的疏水性,
    添加铌矿物的活化剂和脉石矿物的抑制剂来
    提高可浮性
    优点:浮重联合处理矿泥效果好,可有效减少精矿在矿泥中的损失。
    缺点:浮选的选别指标高,对药剂要求高、消耗大,生产成本高
    碱性焙烧—浸出用碱辅助焙烧,以氢氟酸、硫酸、盐酸等无机酸或
    某些有机酸作为浸出剂,对含铌矿物
    酸法浸出
    优点:(1)酸法浸出的高浸出率,可高效提取铌。
    (2)酸浸液可以循环利用,一定程度上减少对环境的污染。
    缺点:(1)酸浸产生的酸废液有毒有害,会造成环境污染,危害人体健康。(2)后续的酸浸出液难以清洁高效地回收处理
    联合工艺采用重磁浮等选矿工艺及冶金工艺联合选别优点:可实现多金属矿的资源综合利用,将矿产资源吃干榨尽。
    缺点:工艺流程复杂,需要较大的资金支持
    下载: 导出CSV
  • [1]

    王佳营, 俞礽安, 李志丹. 三头六臂的“铌”兄“钽”弟−走近稀有金属“铌钽”[J]. 自然资源科普与文化, 2020, 23(2): 14−18.

    WANG J Y, YU R A, LI Z D. "Niobium" brother and "Tantalum" brother with three heads and six arms−approaching the rare metal "niobium tantalum"[J]. Scientific and Cultural Popularization of Natural Resources, 2020, 23(2): 14−18.

    [2]

    王汾连, 赵太平, 陈伟. 铌钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质, 2012, 31(2): 293−308. doi: 10.3969/j.issn.0258-7106.2012.02.010

    WANG F L, ZHAO T P, CHEN W. Advances in study of Nb−Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits[J]. Mineral Deposits, 2012, 31(2): 293−308. doi: 10.3969/j.issn.0258-7106.2012.02.010

    [3]

    刘翔, 周芳春, 黄志飚, 等. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2018, 42(2): 235−243.

    LIU X, ZHOU F C, HUANG Z B, et al. Discovery of Renli superlarge pegmatite−type Nb−Ta polymetallic deposit in Pingjiang, Hu’nan Province and its significances[J]. Geotectonica et Metallogenia, 2018, 42(2): 235−243.

    [4]

    吴师金, 刘庭忠, 周瑜, 等. 坦桑尼亚潘达地区某铌矿工艺矿物学研究[J]. 矿产综合利用, 2020(2): 122−127. doi: 10.3969/j.issn.1000-6532.2020.02.022

    WU S J, LIU T Z, ZHOU Y, et al. Study on the process mineralogy of Niobium in the colombite ore in Mpanda, Tanzania[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 122−127. doi: 10.3969/j.issn.1000-6532.2020.02.022

    [5]

    刘辉, 白伟, 夏明星, 等. 铌合金及其抗氧化涂层研究进展[J]. 中国钼业, 2022, 46(6): 9−13.

    LIU H, BAI W, XIA M X, et al. Research progress of niobium alloys and oxidation resistance coatings[J]. China Molybdenum Industry, 2022, 46(6): 9−13.

    [6]

    张琦, 李智力, 刘爽, 等. 某低品位铌钽矿磁选试验研究[J]. 有色矿冶, 2020, 36(6): 22−26+40.

    ZHANG Q, LI Z L, LIU S, et al. Experimental study on magnetic separation of Nb−Ta ore[J]. Non−FerrousMining and Metallurgy, 2020, 36(6): 22−26+40.

    [7]

    魏均启, 朱丹, 王芳, 等. 湖北断峰山铌钽矿矿物学特征和铌钽赋存状态[J]. 矿物学报, 2021, 41(3): 319−326.

    WEI J Q, ZHU D, WANG F, et al. Mineralogical characteristics and occurrence state of Niobium and Tantalumin the Duanfengshan Nb−Ta deposit in Hubei Province, China[J]. Acta MineralogicaSinica, 2021, 41(3): 319−326.

    [8]

    谭东波, 李东永, 肖益林. “孪生元素”铌−钽的地球化学特性和研究进展[J]. 地球科学, 2018, 43(1): 317−332.

    TAN D B, LI D Y, XIAO Y L. Geochemical characteristics of niobium and tantalum: a review of twin element[J]. Earth Science, 2018, 43(1): 317−332.

    [9]

    王登红, 孙艳, 代鸿章, 等. 我国“三稀矿产”的资源特征及开发利用研究[J]. 中国工程科学, 2019, 21(1): 119−127. doi: 10.15302/J-SSCAE-2019.01.017

    WANG D H, SUN Y, DAI H Z, et al. Characteristics and exploitation of rare earth, rare metal and rare−scattered element minerals in China[J]. Strategic Study of CAE, 2019, 21(1): 119−127. doi: 10.15302/J-SSCAE-2019.01.017

    [10]

    SNEHASIS D, S. M, SAMYUKTHA G, et al. Process development for the separation of niobium and tantalum from fluoride medium using trioctyl amine and application of Taguchi's method to optimize solvent extraction parameters[J]. Hydrometallurgy, 2021, 199: 105522−105530. doi: 10.1016/j.hydromet.2020.105522

    [11]

    SUN L Q, ZHANG X K, WANG L N, et al. Separation and extraction of niobium from H2SO4 solution containing titanium and iron impurities[J]. Separation and Purification Technology, 2022, 295: 121207−121218. doi: 10.1016/j.seppur.2022.121207

    [12]

    欧强. 中国铌资源需求趋势分析及供应风险研究[D]. 北京: 中国地质大学(北京), 2020.

    OU Q. Demand analysis and supply risk of niobium resources in China[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [13]

    DEBLONDE J G, BENGIO D, BELTRAMI D, et al. A fluoride−free liquid−liquid extraction process for the recovery and separation of niobium and tantalum from alkaline leach solutions[J]. Separation and Purification Technology, 2019, 215: 634−643. doi: 10.1016/j.seppur.2019.01.052

    [14]

    DEBLONDE J G, CHAGNES A, WEIGEL V, et al. Direct precipitation of niobium and tantalum from alkaline solutions using calcium−bearing reagents[J]. Hydrometallurgy, 2016, 165: 345−350. doi: 10.1016/j.hydromet.2015.12.009

    [15]

    K D R, RIAN J, ALBA G, et al. Extractive metallurgy of columbite−tantalite ore: A detailed review[J]. Minerals Engineering, 2022, 190: 107917−107934. doi: 10.1016/j.mineng.2022.107917

    [16]

    MELCHER F, GRAUPNER T, GäBLER H, et al. Mineralogical and chemical evolution of tantalum−(niobium−tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns[J]. Ore Geology Reviews, 2016, 89: 946−987.

    [17]

    SHIKIKA A. , SETHURAJAN M., MUVUNDJA F., et al. A review on extractive metallurgy of tantalum and niobium[J]. Hydrometallurgy, 2020, 198: 105496−105512. doi: 10.1016/j.hydromet.2020.105496

    [18]

    FERNANDES T O D, PEREIRA C S D, LUIS A L. Acid leaching and thermal treatments in the obtaining of mixed oxides of Nb and Ta from ferrocolumbite[J]. Minerals Engineering, 2020, 147: 106157−106163. doi: 10.1016/j.mineng.2019.106157

    [19]

    P. A, A. S H, M. V G, et al. Textural and mineral−chemistry constraints on columbite−group minerals in the Penouta deposit: evidence from magmatic and fluid−related processes[J]. Mineralogical Magazine, 2018, 82(S1): S199−S222. doi: 10.1180/minmag.2017.081.107

    [20]

    王汝成, 车旭东, 邬斌, 等. 中国铌钽锆铪资源[J]. 科学通报, 2020, 65(33): 3763−3777. doi: 10.1360/TB-2020-0271

    WANG R C, CHE X D, WU B, et al. Critical mineral resources of Nb, Ta, Zr, and Hf in China[J]. Chinese Science Bulletin, 2020, 65(33): 3763−3777. doi: 10.1360/TB-2020-0271

    [21]

    TA T, M N, JA V, et al. Dissolution and quantification of tantalum−containing compounds: comparison with niobium[J]. South African Journal of Chemistry, 2011, 64: 173−178.

    [22]

    刘阳. 黔西北峨眉山玄武岩顶部风化壳中铌的赋存状态及富集机制初探[D]. 贵阳: 贵州大学, 2023.

    LIU Y. Occurrence and enrichment mechanism of niobium in weathering crust of Emeishan basalt in Northwest Guizhou[D]. Guiyang: Guizhou University, 2023.

    [23]

    翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.

    ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.

    [24]

    王敏, 周家喜, 周美夫, 等. 云南普雄风化淋积型铌稀土矿床中铌的赋存状态和富集规律初探[J]. 大地构造与成矿学, 2022, 46(6): 1057−1074.

    WANG M, ZHOU J X, ZHOU M F, et al. A preliminary study of the occurrence and enrichment of Nb in the Puxiong regolith−hosted Nb−REE deposit, Yunnan Province, China[J]. Geotectonica et Metallogenia, 2022, 46(6): 1057−1074.

    [25]

    曹飞, 杨卉芃, 张亮, 等. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 2019, 39(5): 56−67+89.

    CAO F, YANG H P, ZHANG L, et al. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 56−67+89.

    [26]

    黎洁, 谢贤, 吕晋芳, 等. 铌矿资源概述及选矿技术研究进展[J]. 金属矿山, 2021(2): 120−126.

    LI J, XIE X, LV J F, et al. Overview of niobium resources and research progress in mineral processing technology[J]. Metal Mine, 2021(2): 120−126.

    [27]

    张银. 中国铌资源需求预测及供应安全战略研究[D]. 北京: 中国地质大学(北京), 2020.

    ZHANG Y. Study on demand forecast and supply security strategy of niobium resources in China[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [28]

    郭财胜, 李梅, 柳召刚, 等. 白云鄂博稀土、铌资源综合利用现状及新思路[J]. 稀土, 2014, 35(1): 96−100.

    GUO C S, LI M, LIU Z G, et al. Present status and new ideas on utilization of Bayan Obo Rare Earth and Niobium resource[J]. Chinese Rare Earths, 2014, 35(1): 96−100.

    [29]

    段建军, 姜立峰, 贾艳. 白云鄂博矿选铌的工艺研究[J]. 包钢科技, 2009, 35(S1): 28−31.

    DUAN J J, JIANG L F, JIA Y. Research on the niobium mineral concentration process for Bayan Obo ore[J]. Science & Technology of Baotou Steel, 2009, 35(S1): 28−31.

    [30]

    徐世权, 曾海鹏, 张宏. 竹山庙垭稀土矿的选冶联合工艺技术[J]. 中国矿山工程, 2017, 46(5): 8−13. doi: 10.3969/j.issn.1672-609X.2017.05.003

    XU S Q, ZENG H P, ZHANG H. Beneficiation−metallurgy combination technology of Zhushan Miaoya rare earths mine[J]. China Mine Engineering, 2017, 46(5): 8−13. doi: 10.3969/j.issn.1672-609X.2017.05.003

    [31]

    彭永华, 刘彪文. 宜春钽铌矿综合利用矿产资源的实践[J]. 现代矿业, 2008(8): 87−89.

    PENG Y H, LIU B W. Practice of comprehensive utilization of mineral resources in Yichun tantalum niobium mine[J]. Modern Mining, 2008(8): 87−89.

    [32]

    程征, 伍喜庆, 杨平伟. 我国钽铌矿物资源概况及选矿技术现状与发展[C]//第六届全国尾矿库安全运行与尾矿综合利用技术高峰论坛论文集, 2014: 161−167.

    CHENG Z, WU X Q, YANG P W, Overview of tantalum and niobium mineral resources and status and development of mineral processing technology in China[C]//Proceedings of the 6th National tailings pond safe operation and Tailing Comprehensive Utilization Technology Summit Forum, 2014: 161−167.

    [33]

    李天骄, 刘新茹, 刘越颀, 等. 基于恒等式原理的中国钢铁工业铌资源需求预测研究[J]. 地球学报, 2023, 44(2): 286−296. doi: 10.3975/cagsb.2022.121902

    LI T J, LIU X R, LIU Y Q, et al. Demand forecast research of Niobium resources in China’s iron and steel industry based on the principle of identity[J]. Acta Geoscientica Sinica, 2023, 44(2): 286−296. doi: 10.3975/cagsb.2022.121902

    [34]

    M. N, F. K, T. T, et al. Primary beneficiation of tantalite using magnetic separation and acid leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(12): 1153−1159. doi: 10.1007/s12613-014-1022-6

    [35]

    GEBREYOHANNES G B, ALBERTO R D V, YIMAM A, et al. Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite−spodumene ores[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 727−735. doi: 10.1007/s12613-017-1456-8

    [36]

    程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65−69,85.

    CHENG J Z, CHE L P. Current mining situation and potential development of rare earth in China[J]. Chinese Rare Earths, 2010, 31(2): 65−69,85.

    [37]

    熊玉旺. 云南某钽铌矿中钽、铌的赋存状态研究[J]. 有色金属(选矿部分), 2014(1): 1−4+20.

    XIONG Y W. Research on the occurrence state of tantalum, niobium in a Ta−Nb ore of Yunnan[J]. Nonferrous Metals (Mineral Processing Section), 2014(1): 1−4+20.

    [38]

    ALABI O O, YARO A S, DUNGKA T G, et al. Comparative beneficiation study of Gyel Columbite Ore using double stage (magnetic−to−magnetic and magnetic−to−gravity) separation techniques[J]. Journal of Minerals and Materials Characterization and Engineering, 2016, 4(2): 181−193. doi: 10.4236/jmmce.2016.42017

    [39]

    缪贺成. 白云鄂博东矿霓石型矿石工艺矿物学及铌的分选试验研究[D]. 包头: 内蒙古科技大学, 2022.

    MIU H C. Study on process mineralogy and niobium beneficiation from Bayan Obo east aegirine−type ore[D]. Baotou: Inner mongolia university of science and technology, 2022.

    [40]

    REN Y S, YANG X Y, YANG X M. et al. Mineralogical study on the distribution regularity of niobium in various types of ores in the giant Bayan Obo Fe−REE−Nb deposit[J]. Ore Geology Reviews, 2023, 161: 105602−105619. doi: 10.1016/j.oregeorev.2023.105602

    [41]

    LIU M D, YOU Z X, PENG Z W, et al. Enrichment of rare earth and niobium from a REE−Nb−Fe associated ore via reductive roasting followed by magnetic separation[J]. JOM, 2016, 68(2): 567−576. doi: 10.1007/s11837-015-1679-y

    [42]

    GIBSON C, KELEBEK S, AGHAMIRIAN M. Niobium oxide mineral flotation: a review of relevant literature and the current state of industrial operations[J]. International Journal of Mineral Processing, 2015, 137: 82−97. doi: 10.1016/j.minpro.2015.02.005

    [43]

    YUAN Z T, LU J W, WU H F, et al. Mineralogical characterization and comprehensive utilization of micro−fine tantalum−niobium ores from Songzi[J]. Rare Metals, 2015, 34(4): 282−290. doi: 10.1007/s12598-014-0428-7

    [44]

    李美荣, 孟庆波, 梁冬云, 等. 江西某钽铌矿矿物学特性及钽铌赋存状态研究[J]. 有色金属(选矿部分), 2021(6): 17−26.

    LI M R, MENG Q B, LIANG D Y, et al. Study on mineralogical characteristics and occurrence of tantalum and niobium in a Tantalum−Niobium ore in Jiangxi[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 17−26.

    [45]

    钱志博, 朱阳戈, 孙志健, 等. 某复杂多金属矿低尾化综合回收利用技术研究[J]. 有色金属(选矿部分), 2022(1): 54−61+67.

    QIAN Z B, ZHU Y G, SUN Z J, et al. Research on comprehensive recovery and utilization technology of low tailings in a complex polymetallic ore[J]. Nonferrous Metals (Mineral Processing Section), 2022(1): 54−61+67.

    [46]

    王垚波. 广东省某矿区铌钽矿床矿石及矿物学特征浅析[J]. 矿业工程, 2017, 15(3): 3−4.

    WANG Y B. Analysis of mineral ores and mineralogical characteristics of niobium−tantalum deposit in a mine in Guangdong Province[J]. Mining Engineering, 2017, 15(3): 3−4.

    [47]

    LIU F, CHE X D, HU H, et al. New Nb−Ta mineralization age of the Dajishan W−Nb−Ta deposit in Jiangxi Province, South China[J]. Acta GeologicaSinica (English Edition), 2019, 93(2): 485−486. doi: 10.1111/1755-6724.13835

    [48]

    WU K, ZHANG J Y, LIU G, et al. An easy way to quantify the adhesion energy of nanostructured Cu/X (X= Cr, Ta, Mo, Nb, Zr) multilayer films adherent to polyimide substrates[J]. Acta MetallurgicaSinica (English Letters), 2016, 29(2): 181−187. doi: 10.1007/s40195-016-0375-4

    [49]

    冉孟杰, 任国兴, 肖松文, 等. 白云鄂博铌资源提取研究进展[J]. 稀有金属与硬质合金, 2022, 50(5): 12−18.

    RAN M J, REN G X, XIAO S W, et al. Research progress on the extraction of Niobium resources in Bayan Obo[J]. Rare Metals and Cemented Carbides, 2022, 50(5): 12−18.

    [50]

    张琦. 低品位铌钽矿联合选矿工艺[D]. 武汉: 武汉工程大学, 2022.

    ZHANG Q. Combined beneficiation process of low−grade niobium−tantalum ore[D]. Wuhan: Wuhan Institute of Technology, 2022.

    [51]

    李新冬, 黄万抚, 肖芫华, 等. 从原生钽铌矿细泥中回收钽铌的选矿工艺研究[J]. 稀有金属与硬质合金, 2012, 40(3): 5−7.

    LI X D, HUANG W F, XIAO Y H, et al. Beneficiation process for tantalum and niobium recovery from primary slime of Tantalum−Niobium ore[J]. Rare Metals and Cemented Carbides, 2012, 40(3): 5−7.

    [52]

    陈建峰, 邹海魁, 初广文, 等. 超重力技术及其工业化应用[J]. 硫磷设计与粉体工程, 2012(1): 6−10+5. doi: 10.3969/j.issn.1009-1904.2012.01.003

    CHEN J F, ZOU H K, CHU G W, et al. High gravity technology and its industrial application[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2012(1): 6−10+5. doi: 10.3969/j.issn.1009-1904.2012.01.003

    [53]

    LAN X, GAO J T, WANG Z W, et al. Separation of niobium and rare earths from Fe−Nb−RE associated ultra−low−grade tailings using super gravity[J]. Separation and Purification Technology, 2023, 314: 123589−123597. doi: 10.1016/j.seppur.2023.123589

    [54]

    HASSAN R E, MUTELET F, ABDEL−KHALEK A N, et al. Beneficiation and separation of Egyptian Tantalite Ore[J]. Key Engineering Materials, 2020, 835: 208−213. doi: 10.4028/www.scientific.net/KEM.835.208

    [55]

    许海峰, 周瑜林, 卢翔, 等. 铌矿浮选药剂研究进展[J]. 矿冶工程, 2022, 42(6): 50−56.

    XU H F, ZHOU Y L, LU X, et al. Research progress of niobium ore flotation reagents[J]. Mining and Metallurgical Engineering, 2022, 42(6): 50−56.

    [56]

    刘爽, 林璠, 鲁力, 等. 湖北省某矿区含铌矿石选矿试验研究[J]. 矿产综合利用, 2014(6): 35−38.

    LIU S, LIN F, LU L, et al. Experimental research on the mineral processing technology for one Niobium ore in Hubei[J]. Multipurpose Utilization of Mineral Resources, 2014(6): 35−38.

    [57]

    NI X, PARRENT M, CAO M L, et al. Developing flotation reagents for niobium oxide recovery from carbonatite Nb ores[J]. Minerals Engineering, 2012, 36−38: 111−118.

    [58]

    LIU M X, LI H, JIANG T, et al. Flotation of coarse and fine pyrochlore using octyl hydroxamic acid and sodium oleate[J]. Minerals Engineering, 2019, 132: 191−201. doi: 10.1016/j.mineng.2018.12.014

    [59]

    任皞, 纪绯绯, 宋桂兰. 五种抑制剂对铌铁金红石、赤铁矿和萤石的抑制作用比较[J]. 有色金属工程, 2005(3): 73−75,85.

    REN H, JI F F, SONG G L. Depression effects of five depressants on ilmenorutile, hematile and fluorite[J]. Nonferrous Metals Engineering, 2005(3): 73−75,85.

    [60]

    NI X, LIU Q. Adsorption behaviour of sodium hexametaphosphate on pyrochlore and calcite[J]. Canadian Metallurgical Quarterly, 2013, 52(4): 473−478. doi: 10.1179/1879139513Y.0000000088

    [61]

    CAPPONI F. , AZEVEDO A., OLIVEIRA H., et al. Column rougher flotation of fine niobium−bearing particles assisted with micro and nanobubbles[J]. Minerals Engineering, 2023, 199: 108119−108122. doi: 10.1016/j.mineng.2023.108119

    [62]

    王介良, 孙韩庭, 赵增武, 等. 白云鄂博矿梯级磁选富集微弱磁性稀土和铌[J/OL]. 中国稀土学报: 1−14.[2024-02-22].http://kns.cnki.net/kcms/detail/11.2365.TG.20231025.1638.006.html..

    WANG J L, SUN H T, ZHAO Z W, et al. Enrichment behavior of weak magnetic Rare Earth and Niobium in Bayan Obo ore through cascade magnetic separation[J/OL]. Journal of the Chinese Society of Rare Earths: 1−14.[2024-02-22].http://kns.cnki.net/kcms/detail/11.2365.TG.20231025.1638.006.html.

    [63]

    NZEHN S, POPOOLAA. P. I, ADELEKE A A, et al. Factors and challenges in the recovery of niobium and tantalum from mineral deposits, recommendations for future development−A review[J]. Materials Today:Proceedings, 2022, 65(P3): 2184−2191.

    [64]

    DE O T F, TENóRIO J A S, ESPINOSA D C R. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources[J]. Minerals Engineering, 2023, 201: 108224−108238. doi: 10.1016/j.mineng.2023.108224

    [65]

    SUN L Q, YU H D, MENG F C, et al. Recovery of niobium and titanium from ilmenorutile by NaOH roasting−H2SO4 leaching process[J]. Journal of Materials Research and Technology, 2021, 15: 2575−2583. doi: 10.1016/j.jmrt.2021.09.091

    [66]

    SHIKIKA A. , MUVUNDJA F., MUGUMAODERHA M. C., et al. Extraction of Nb and Ta from a coltan ore from South Kivu in the DRC by alkaline roasting−thermodynamic and kinetic aspects[J]. Minerals Engineering, 2021, 163: 106751−106761. doi: 10.1016/j.mineng.2020.106751

    [67]

    GHAMBI S, SERGIO S, VITALIS C, et al. An investigation on hydrofluoric (HF) acid−free extraction for niobium oxide (Nb2O5) and tantalum oxide (Ta2O5) from columbite/tantalite concentrates using alkali reductive roasting[J]. Minerals Engineering, 2021, 173: 107183−107193. doi: 10.1016/j.mineng.2021.107183

    [68]

    HABINSHUTIJ B, MUNGANYINKA J P, HIMANSHU T, et al. Fluoride−free, simple, and environmentally friendly extraction of mixed oxides of niobium and tantalum from the Nigerian and Rwandan columbite−tantalite concentrates[J]. Minerals Engineering, 2023, 201: 108201−108212. doi: 10.1016/j.mineng.2023.108201

    [69]

    乔晓明, 李梅, 张栋梁, 等. 从提钪浸出渣中回收铌的研究[J]. 有色金属(冶炼部分), 2016(3): 44−47.

    QIAO X M, LI M, ZHANG D L, et al. Study on recovery of niobium from scandium bearing acid−leaching−residue[J]Nonferrous Metals (Extractive Metallurgy), 2016(3): 44−47.

    [70]

    ZHANG B, XUE X X, YANG H. A novel process for recovery of scandium, rare earth and niobium from Bayan Obo tailings: NaCl−Ca(OH)2−coal roasting and acid leaching[J]. Minerals Engineering, 2022, 178: 107401−107410. doi: 10.1016/j.mineng.2022.107401

    [71]

    WANG W, LIU L, LIU H Z, et al. Recovery of rare earths and niobium from a potash feldspar ore beneficiation tailings[J]. Arabian Journal of Chemistry, 2023, 16(10): 105136−105143. doi: 10.1016/j.arabjc.2023.105136

    [72]

    刘志超, 李春风, 贾秀敏, 等. 华阳川铀铌铅低品位多金属矿选矿综合回收技术研究[J]. 矿产保护与利用, 2021, 41(3): 132−137.

    LIU Z C, LI C F, JIA X M, et al. Study on comprehensive recovery technology of Hua yangchuan low grade U−Nb−Pb polymetallic ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 132−137.

    [73]

    程仁举, 李成秀, 刘星, 等. 四川某锂多金属矿石选矿试验[J]. 金属矿山, 2017, 495(9): 111−114. doi: 10.3969/j.issn.1001-1250.2017.09.023

    CHENG R J, LI C X, LIU X, et al. Experimental research on comprehensive utilization of lithium polymetallic ore in Sichuan Province[J]. Metal Mine, 2017, 495(9): 111−114. doi: 10.3969/j.issn.1001-1250.2017.09.023

    [74]

    李宏, 孙金龙, 谭秀民, 等. 某含铷花岗岩矿石中伴生钽铌锂的综合回收试验研究[J]. 金属矿山, 2022(11): 126−133.

    LI H, SUN J L, TAN X M, et al. Research study on comprehensive recovery for associated tantalum−niobium−lithium from a rubidium−bearing granite ore[J]. Metal Mine, 2022(11): 126−133.

    [75]

    刘文丽, 杜文秀, 陈宏超, 等. 白云鄂博矿稀土浮选尾矿回收铌试验[J]. 现代矿业, 2023, 39(1): 148−151+155. doi: 10.3969/j.issn.1674-6082.2023.01.033

    LIU W L, DU W X, CHEN H C, et al. Recovery of niobium from rare earth flotation tailings of Bayan Obo mine[J]. Modern Mining, 2023, 39(1): 148−151+155. doi: 10.3969/j.issn.1674-6082.2023.01.033

    [76]

    ZHANG S H, RAO M J, XIAO R D, et al. Beneficiation of Nb and Ti carbides from pyrochlore ore via carbothermic reduction followed by magnetic separation[J]. Minerals Engineering, 2022, 180: 107492−107499. doi: 10.1016/j.mineng.2022.107492

  • 加载中

(1)

(4)

计量
  • 文章访问数:  749
  • PDF下载数:  338
  • 施引文献:  0
出版历程
收稿日期:  2023-10-18
刊出日期:  2024-02-15

目录