Application Research Status of Discrete Element Method in Ore Crushing
-
摘要:
离散元法(Discrete Element Method,DEM)是一种非连续介质力学数值计算方法,已被广泛应用于矿物加工破碎过程的研究,用于分析和求解离散系统中颗粒的运动规律、碰撞和破碎特性,为研究矿物的破碎机理、优化破碎设备的工作参数和机械结构提供了重要的理论研究手段。介绍了离散元法数值模拟技术中两种用于模拟矿物颗粒破碎的仿真模型:键合粒子模型(Bonded Particle Model,BPM)和颗粒替换模型(Particle Replacement Model,PRM),并对两种模型的基本原理、模型缺陷、优化进展及应用进行了概述,综述了利用DEM研究圆锥破碎机、颚式破碎机、冲击式破碎机、反击式破碎机等各类破碎设备在不同矿物特性、设备结构以及工作参数影响下的破碎性能表现的研究进展,讨论了DEM在碎矿研究领域存在的优势及局限性,并提出了基于DEM研究矿物破碎问题的发展方向。
Abstract:Discrete Element Method (DEM) is a numerical method of discontinuous media mechanics, which has been widely used in the study of mineral processing and crushing process, and is used to analyze and solve the motion law, collision and crushing characteristics of particles in the discrete system. It provides an important theoretical research method for studying the crushing mechanism of minerals and optimizing the working parameters and mechanical structure of crushing equipment. This paper introduces two kinds of simulation models for simulating mineral particle breakage in discrete element numerical simulation technology: Bonded Particle Model (BPM) and Particle Replacement Model (PRM), and the basic principle, model defects, optimization progress and application of the two models are summarized. The research progress of cone crusher, jaw crusher, impact crusher and impact crusher under the influence of different mineral properties, structures and working parameters is reviewed. The advantages and limitations of DEM in ore crushing are discussed, and the development direction of mineral crushing research based on DEM is put forward.
-
Key words:
- DEM /
- bonded particle model /
- particle replacement model /
- crushing equipment /
- crushing characteristic
-
-
图 1 颗粒间的力−位移行为[7]
Figure 1.
-
[1] 肖庆飞, 康怀斌, 肖珲, 等. 碎磨技术的研究进展及其应用[J]. 铜业工程, 2016(1): 15−27. doi: 10.3969/j.issn.1009-3842.2016.01.005
XIAO Q F, KANG H B, XIAO H, et al. Research progress and application of grinding technology[J]. Copper Engineering, 2016(1): 15−27. doi: 10.3969/j.issn.1009-3842.2016.01.005
[2] LIU G Y, XU W J, GOVENDER N, et al. A cohesive fracture model for discrete element method based on polyhedral blocks[J]. Powder Technology, 2020, 359: 190−204. doi: 10.1016/j.powtec.2019.09.068
[3] NAKATA A F L, HYDE M, HYODO H, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567−583.
[4] WEERASEKARA N S, POWELL M S, CLEARY P W, et al. The contribution of DEM to the science of comminution[J]. Powder Technology, 2013, 248: 3−24. doi: 10.1016/j.powtec.2013.05.032
[5] SINNOTT M D, CLEARY P W. Simulation of particle flows and breakage in crushers using DEM: Part 2 – impact crushers[J]. Minerals Engineering, 2015, 74: 163−177. doi: 10.1016/j.mineng.2014.11.017
[6] QUIST J, EVERTSSON C M. Cone crusher modelling and simulation using DEM[J]. Minerals Engineering, 2016, 85: 92−105. doi: 10.1016/j.mineng.2015.11.004
[7] POTYONDY D O, CUNDALL P A. A bonded−particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329−1364. doi: 10.1016/j.ijrmms.2004.09.011
[8] ZHAO Z. Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1461−1479. doi: 10.1007/s00603-013-0373-z
[9] KD Kafui, C Thornton. Numerical simulations of impact breakage of a spherical crystalline agglomerate[EB/OL]. [2023−08−02].DOI: 10.1016/S0032-5910(99)00231-4.
[10] KAZERANI T, ZHAO J. Micromechanical parameters in bonded particle method for modelling of brittle material failure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(18): 1877−1895. doi: 10.1002/nag.884
[11] LI X F, LI H B, ZHAO J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock[J]. Computers and Geotechnics, 2017, 90: 96−112. doi: 10.1016/j.compgeo.2017.05.023
[12] CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997−1010. doi: 10.1016/j.ijrmms.2007.02.002
[13] TSOUNGUI O, VALLET D, CHARMET J C. Numerical model of crushing of grains inside two−dimensional granular materials[J]. Powder Technology, 1999, 105(1/2/3): 190−198. doi: 10.1016/S0032-5910(99)00137-0
[14] LOBO−GUERRERO S, VALLEJO L E. Discrete element method analysis of railtrack ballast degradation during cyclic loading[J]. Granular Matter, 2006, 8(3/4): 195−204. doi: 10.1007/s10035-006-0006-2
[15] LOBO−GUERRERO S, VALLEJO L E. Crushing a weak granular material: experimental numerical analyses[J]. Géotechnique, 2005, 55(3): 245−249.
[16] LOBO−GUERRERO S, VALLEJO L E. DEM analysis of crushing around driven piles in granular materials[J]. Géotechnique, 2005, 55(8): 617−623.
[17] LOBO−GUERRERO S, VALLEJO L E, VESGA L F. Visualization of crushing evolution in granular materials under compression using DEM[J]. International Journal of Geomechanics, 2006, 6(3): 195−200. doi: 10.1061/(ASCE)1532-3641(2006)6:3(195)
[18] 杨贵, 许建宝, 刘昆林. 粗粒料颗粒破碎数值模拟研究[J]. 岩土力学, 2015, 36(11): 3301−3306.
YANG G, XU J B, LIU K L. Numerical simulation of particle breakage of coarse particles[J]. Rock and Soil Mechanics, 2015, 36(11): 3301−3306.
[19] ALAEI E, MAHBOUBI A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon[J]. Granular Matter, 2012, 14(6): 707−717. doi: 10.1007/s10035-012-0367-7
[20] LIU S, WANG Y, SHEN C. DEM analysis of granular crushing during simple shearing[J]. Marine Georesources & Geotechnology, 2018, 36(5): 522−531.
[21] åSTRöM J A, HERRMANN H J. Fragmentation of grains in a two−dimensional packing[J]. The European Physical Journal B, 1998, 5(3): 551−554. doi: 10.1007/s100510050476
[22] HANLEY K J, O’SULLIVAN C, HUANG X. Particle−scale mechanics of sand crushing in compression and shearing using DEM[J]. Soils and Foundations, 2015, 55(5): 1100−1112. doi: 10.1016/j.sandf.2015.09.011
[23] WANG P, KARATZA Z, ARSON C. DEM modelling of sequential fragmentation of zeolite granules under oedometric compression based on XCT observations[J]. Powder Technology, 2019, 347: 66−75. doi: 10.1016/j.powtec.2019.02.050
[24] DELANEY G W, CLEARY P W, SINNOTT M D, 等. Novel application of DEM to modelling comminution processes[J]. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012099.
DELANEY G W, CLEARY P W, SINNOTT M D, et al. Novel application of DEM to modelling comminution processes[J]. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012099.
[25] DE ARRUDA TINO A A, TAVARES L M. Simulating breakage tests using the discrete element method with polyhedral particles[J]. Computational Particle Mechanics, 2022, 9(4): 811−823. doi: 10.1007/s40571-021-00448-4
[26] TAVARES L M, DAS CHAGAS A S. A stochastic particle replacement strategy for simulating breakage in DEM[J]. Powder Technology, 2021, 377: 222−232. doi: 10.1016/j.powtec.2020.08.091
[27] REFAHI A, REZAI B, AGHAZADEH MOHANDESI J. Use of rock mechanical properties to predict the Bond crushing index[J]. Minerals Engineering, 2007, 20(7): 662−669. doi: 10.1016/j.mineng.2006.12.015
[28] CHENG J, REN T, ZHANG Z, et al. A dynamic model of inertia cone crusher using the discrete element method and multi−body dynamics coupling[J]. Minerals, 2020, 10(10): 862. doi: 10.3390/min10100862
[29] LICHTER J, LIM K, POTAPOV A, et al. New developments in cone crusher performance optimization[J]. Minerals Engineering, 2009, 22(7/8): 613−617. doi: 10.1016/j.mineng.2009.04.003
[30] BELOGLAZOV I. Automation experimental studies of grinding process in jaw crusher using DEM simulation[J]. Journal of Physics: Conference Series, 2018, 1118: 012007. doi: 10.1088/1742-6596/1118/1/012007
[31] CLEARY P W, SINNOTT M D. Simulation of particle flows and breakage in crushers using DEM: Part 1−compression crushers[J]. Minerals Engineering, 2015, 74: 178−197. doi: 10.1016/j.mineng.2014.10.021
[32] DELANEY G W, CLEARY P W. The packing properties of superellipsoids[J]. EPL (Europhysics Letters), 2010, 89(3): 34002. doi: 10.1209/0295-5075/89/34002
[33] DELANEY G W, MORRISON R D, SINNOTT M D, et al. DEM modelling of non−spherical particle breakage and flow in an industrial scale cone crusher[J]. Minerals Engineering, 2015, 74: 112−122. doi: 10.1016/j.mineng.2015.01.013
[34] LI H, MCDOWELL G, LOWNDES I. Discrete element modelling of a rock cone crusher[J]. Powder Technology, 2014, 263: 151−158. doi: 10.1016/j.powtec.2014.05.004
[35] JOHANSSON M, QUIST J, EVERTSSON M, et al. Cone crusher performance evaluation using DEM simulations and laboratory experiments for model validation[J]. Minerals Engineering, 2017, 103-104: 93−101. doi: 10.1016/j.mineng.2016.09.015
[36] CLEARY P W, SINNOTT M D, MORRISON R D, et al. Analysis of cone crusher performance with changes in material properties and operating conditions using DEM[J]. Minerals Engineering, 2017, 100: 49−70. doi: 10.1016/j.mineng.2016.10.005
[37] 潘伟桥, 马立峰, 吴凤彪, 等. 圆锥破碎机破能的分析与腔型优化[J]. 机械设计与制造, 2022(6): 48−53.
PAN W Q, MA L F, WU F B, et al. Analysis of breaking energy and cavity profile optimization of cone crusher[J]. Machinery Design & Manufacture, 2022(6): 48−53.
[38] 郭华军, 戴搭银. 基于离散元法的颚式破碎机动颚板磨损分析与研究[J]. 矿业研究与开发, 2020, 40(7): 130−134.
GUO H J, DAI T Y. Wear analysis and research of jaw plate based on discrete element method[J]. Mining Research and Development, 2020, 40(7): 130−134.
[39] 陈瑶, 秦志钰, 容幸福. 基于EDEM的颚式破碎机内物料破碎行为研究[J]. 机械设计与制造, 2017(2): 46−49.
CHEN Y, QIN Z Y, RONG X X. Research on crushing behavior of material in jaw crusher based on EDEM[J]. Machinery Design & Manufacture, 2017(2): 46−49.
[40] 刘钢湘, 姜志宏, 彭杰. 基于多尺度内聚颗粒模型的颚式破碎机破碎过程研究[J]. 冶金管理, 2021(3): 70−71+75.
LIU G X, JIANG Z H, PENG J. Research on crushing process of jaw crusher based on multi−scale cohesive particle model[J]. Metallurgical Management, 2021(3): 70−71+75.
[41] 吴文震, 冯雁明, 丁智勇, 等. 基于RecurDyn和EDEM的颚式破碎机的破碎耦合仿真[J]. 建筑机械, 2022(11): 91−94+97.
WU W Z, FENG Y M, DING Z Y, et al. Crushing coupling simulation of jaw crusher based on recurdyn and EDEM[J]. Construction Machinery, 2022(11): 91−94+97.
[42] CHIMWANI N, BWALYA M M. Milling studies in an impact crusher I: kinetics modelling based on population balance modelling[J]. Minerals, 2021, 11(5): 470. doi: 10.3390/min11050470
[43] DUAN D R, WANG S, ZHAO F, et al. Analysis of particle motion in vertical shaft impact crusher rotor[J]. Advanced Materials Research, 2011, 199-200: 54−57. doi: 10.4028/www.scientific.net/AMR.199-200.54
[44] 贺占蜀, 余金龙, 陈江义, 等. 基于离散元法的立轴冲击式破碎机的破碎仿真[J]. 郑州大学学报(工学版), 2021, 42(6): 55−60.
HE Z S, YU J L, CHEN J Y, et al. Simulation of vertical shaft impact crusher based on discrete element method[J]. Journal of Zhengzhou University (Engineering and Technology Edition), 2021, 42(6): 55−60.
[45] BWALYA M M, CHIMWANI N. Numerical simulation of a single and double−rotor impact crusher using discrete element method[J]. Minerals, 2022, 12(2): 143. doi: 10.3390/min12020143
[46] LUO M, YANG J H, FANG H Y. An investigation on sand production of vertical shaft impact crusher using EDEM[J]. Advanced Materials Research, 2014, 1004/1005: 1226−1230. doi: 10.4028/www.scientific.net/AMR.1004-1005.1226
[47] 黄鹏鹏, 胡名亮, 李成. 基于EDEM的反击式破碎机破碎效率仿真分析[J]. 机械设计与制造, 2016(12): 64−68.
HUANG P P, HU M L, LI C. Simulation analysis of crushing efficiency of impact crusher based on EDEM[J]. Machinery Design & Manufacture, 2016(12): 64−68.
[48] 汪建新, 杜志强. 立轴破碎机的改进与仿真分析[J]. 矿业研究与开发, 2019, 39(12): 144−148.
WANG J X, DU Z Q. Improvement and simulation analysis of vertical shaft crusher[J]. Mining Research and Development, 2019, 39(12): 144−148.
[49] LIU C, CHEN Z, ZHANG W, et al. Analysis of vertical roller mill performance with changes in material properties and operating conditions using DEM[J]. Minerals Engineering, 2022, 182: 107573. doi: 10.1016/j.mineng.2022.107573
[50] ZHANG C, ZOU Y, GOU D, et al. Experimental and numerical investigation of particle size and particle strength reduction in high pressure grinding rolls[J]. Powder Technology, 2022, 410: 117892. doi: 10.1016/j.powtec.2022.117892
[51] NAGATA Y, TSUNAZAWA Y, TSUKADA K, et al. Effect of the roll stud diameter on the capacity of a high−pressure grinding roll using the discrete element method[J]. Minerals Engineering, 2020, 154: 106412. doi: 10.1016/j.mineng.2020.106412
[52] LI Y W, ZHAO L L, HU E Y, et al. Laboratory−scale validation of a DEM model of a toothed double−roll crusher and numerical studies[J]. Powder Technology, 2019, 356: 60−72. doi: 10.1016/j.powtec.2019.08.010
[53] 张瑞新, 刘煜, 郑群飞, 等. 基于EDEM的双齿辊破碎机破碎效率影响因素仿真分析[J]. 金属矿山, 2018(2): 154−159.
ZHANG R X, LIU Y, ZHENG Q F, et al. Simulation analysis of influencing factors of crushing efficiency of double−tooth roll crusher based on EDEM[J]. Metal Mine, 2018(2): 154−159.
[54] 尹新伟, 胡月龙, 杨学鹏, 等. 双齿辊破碎机的破碎力离散元模拟研究[J]. 煤炭科学技术, 2020, 48(6): 154−161.
YIN X W, HU Y L, YANG X P, et al. Research on discrete element simulation of crushing force of double−toothed roll crusher[J]. Coal Science and Technology, 2020, 48(6): 154−161.
[55] SUN K, MA R, LI G, et al. The influence of the structure of double toothed roller crusher on the crushing effect based on EDEM[J]. IOP Conference Series: Materials Science and Engineering, 2018, 423: 012152. doi: 10.1088/1757-899X/423/1/012152
[56] 毕秋实, 王国强, 黄婷婷, 等. 基于DEM−FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770−1776.
BI Q S, WANG G Q, HUANG T T, et al. Strength analysis of double−tooth roll crusher based on DEM and FEM coupling[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1770−1776.
[57] LU Y, MA R, LI G, et al. Reliability optimization design of bevel gear drive system based on large−scale double−toothed roll crusher[J]. IOP Conference Series:Materials Science and Engineering, 2018, 423: 012157. doi: 10.1088/1757-899X/423/1/012157
-