天然沸石对模拟尾矿渗滤液中重金属离子的静、动态吸附研究

杨兰, 李兆明, 梅乐夫, 吕国诚, 廖立兵. 天然沸石对模拟尾矿渗滤液中重金属离子的静、动态吸附研究[J]. 矿产保护与利用, 2024, 44(1): 95-104. doi: 10.13779/j.cnki.issn1001-0076.2024.01.016
引用本文: 杨兰, 李兆明, 梅乐夫, 吕国诚, 廖立兵. 天然沸石对模拟尾矿渗滤液中重金属离子的静、动态吸附研究[J]. 矿产保护与利用, 2024, 44(1): 95-104. doi: 10.13779/j.cnki.issn1001-0076.2024.01.016
YANG Lan, LI Zhaoming, MEI Lefu, LV Guocheng, LIAO Libing. Study on the Static and Dynamic Adsorption of Heavy Metal Ions in Simulated Tailings Leachate by Natural Zeolite[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 95-104. doi: 10.13779/j.cnki.issn1001-0076.2024.01.016
Citation: YANG Lan, LI Zhaoming, MEI Lefu, LV Guocheng, LIAO Libing. Study on the Static and Dynamic Adsorption of Heavy Metal Ions in Simulated Tailings Leachate by Natural Zeolite[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 95-104. doi: 10.13779/j.cnki.issn1001-0076.2024.01.016

天然沸石对模拟尾矿渗滤液中重金属离子的静、动态吸附研究

  • 基金项目: 国家自然科学基金重点项目(41831288)
详细信息
    作者简介: 杨兰(1997—),女,硕士研究生,E-mail:18810890417@163.com
    通讯作者: 梅乐夫(1978—),男,教授,E-mail:mlf@cugb.edu.cn 廖立兵(1963—),男,教授, E-mail:clayl@cugb.edu.cn
  • 中图分类号: TD926;TD923

Study on the Static and Dynamic Adsorption of Heavy Metal Ions in Simulated Tailings Leachate by Natural Zeolite

More Information
  • 沸石具有良好的吸附性能和离子交换特性,对去除水中的重金属离子具有廉价、高效的优点。利用天然沸石矿物作为吸附材料,探讨了在不同条件下对干扰分选过程的多种重金属离子的去除效果和去除机制,研究了其在静、动态条件下去除模拟尾矿渗滤液中重金属离子的性能和机理。单一重金属离子静态吸附实验结果表明,沸石对Pb2+、Cu2+、Mn2+、Zn2+均有较好的去除效果,对4种重金属离子的吸附能力大小为Pb2+ > Cu2+ > Zn2+ > Mn2+。混合离子静态吸附实验结果表明,在任意初始质量浓度下,Pb2+在沸石上的吸附量均远大于Cu2+、Zn2+和Mn2+。4种离子的吸附过程均符合Langmuir等温模型,属于单分子层吸附,准二级动力学模型能较好地描述沸石吸附4种重金属离子的过程,沸石在离子交换、表面静电和断键络合的共同作用下去除重金属离子,由于存在竞争吸附,沸石对相同价态不同阳离子的吸附能力存在较大差异,这主要受不同阳离子的水合半径的影响。动态条件下沸石对Cu2+、Mn2+、Pb2+、Zn2+ 的去除分别在102 h、64 h、900 h和78 h达到平衡,沸石的有效工作时间较长,可作为渗透反应格栅 (PRB) 的介质材料用于多金属矿尾矿渗滤液污染地下水的原位修复,具有良好的社会和经济效益。

  • 加载中
  • 图 1  (a)样品的XRD图谱;(b)样品的Rietveld精修图谱

    Figure 1. 

    图 2  沸石的SEM图(a,b),沸石样品中各元素的Mapping图(c)

    Figure 2. 

    图 3  沸石样品对Cu2+、Mn2+、Pb2+、Zn2+的吸附曲线

    Figure 3. 

    图 4  沸石样品对Cu2+、Mn2+、Pb2+、Zn2+的吸附量随吸附时间的变化

    Figure 4. 

    图 5  pH值对沸石样品吸附Cu2+、Mn2+、Pb2+、Zn2+的影响

    Figure 5. 

    图 6  沸石样品对Cu2+、Mn2+、Pb2+、Zn2+混合离子的静态吸附曲线

    Figure 6. 

    图 7  沸石样品对Cu2+、Mn2+、Pb2+、Zn2+混合离子的动态吸附曲线

    Figure 7. 

    图 8  Cu2+、Mn2+、Pb2+、Zn2+的阳离子交换量

    Figure 8. 

    图 9  沸石在不同pH值下的Zeta电位值

    Figure 9. 

    图 10  不同初始质量浓度下总离子交换量在去除量的占比

    Figure 10. 

    表 1  样品的氧化物成分含量

    Table 1.  Oxide content of the sample /%

    成分SiO2Al2O3K2OCaOFe2O3Na2OMgO其他
    含量70.3714.505.573.872.651.400.660.98
    下载: 导出CSV

    表 2  沸石吸附Cu2+、Mn2+、Pb2+、Zn2+的Langmuir 和Freundlich等温线拟合相关系数

    Table 2.  Langmuir and freundlich adsorption isotherms fitting correlation coefficients of Cu2+、Mn2+、Pb2+、Zn2+ on zeolite

    金属
    离子
    Langmuir 方程Freundlich 方程
    qmaxKLR2KFnR2
    Cu2+14.220.00520.98011.253.020.9205
    Pb2+105.260.00280.98275.862.750.9789
    Zn2+7.300.00610.99223.779.380.7939
    Mn2+12.360.00350.98862.662.080.9701
    下载: 导出CSV

    表 3  沸石样品吸附 Cu2+、Mn2+、Pb2+、Zn2+ 的准一阶和准二阶动力学拟合相关系数

    Table 3.  Fitting correlation coefficients of quasi−first−order and quasi−second−order kinetics of adsorption of Cu2+、Mn2+、Pb2+、Zn2+ by zeolite samples

    金属
    离子
    准一级动力学模型准二级动力学模型
    K1qeR2K2qeR2
    Cu2+0.00763.500.45090.030223.250.9998
    Pb2+0.012520.280.98200.002734.480.9960
    Zn2+0.00292.120.96950.01664.100.9873
    Mn2+0.00693.120.43820.027816.830.9980
    下载: 导出CSV

    表 4  重金属初始质量浓度为1000 mg/L时溶液中被交换出的K+、Ca2+、Na+、Mg2+的量

    Table 4.  Heavy metal removal capacity and exchange capacity of K+, Ca2+, Na+, Mg2+ at 1000 mg/L

    金属离子交换量/mmol总交换量/mmol重金属去除量/mmol总交换量/去除量/%
    K+Ca2+Na+Mg2+
    Cu2+0.02410.02040.04030.00220.05470.355615.38
    Mn2+0.02550.01780.03080.00210.04800.330814.51
    Pb2+0.04220.02430.04460.00220.06990.106665.57
    Zn2+0.02210.01870.02890.00180.04600.280616.39
    注:总交换量=( K++ Na+)/2+ Ca2++ Mg2+
    下载: 导出CSV
  • [1]

    李培良, 李国政, 刘冠峰. 某尾矿库渗漏水对地下水的影响分析[J]. 黄金, 2005, 26(12): 45−47.

    LI P L, LI G Z, LIU G F. The influence of seepage flow on groundwater in certain tailing pool[J]. Gold, 2005, 26(12): 45−47.

    [2]

    吴和政, 郑薇. 我国矿山生态环境及生态恢复技术的现状[J]. 中国地质灾害与防治学报, 2007, 7(S1): 35−37.

    WU H Z, ZHENG W. The situation of eco−environment and its resumption techniques in mining area of our country[J]. The Chinese Journal of Geological Hazard and Control, 2007, 7(S1): 35−37.

    [3]

    INDRARATNA B G, REGMI L D, et al. Performance of a PRB for the remediation of acidic groundwater in acid sulfate soil terrain[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 897−906. doi: 10.1061/(ASCE)GT.1943-5606.0000305

    [4]

    REGMI G B, INDRARATNA L D, et al. Treatment of acidic groundwater in acid sulfate soil terrain using recycled concrete: column experiments[J]. Journal of Environmental Engineering, 2011, 137(6): 433−443. doi: 10.1061/(ASCE)EE.1943-7870.0000331

    [5]

    SHUIBO X Z, CHUN Z, et al. Removal of uranium (Ⅵ) from aqueous solution by adsorption of hematite[J]. Journal of Environmental Radioactivity, 2009, 100(2): 162−166. doi: 10.1016/j.jenvrad.2008.09.008

    [6]

    黄羽飞. 两个多金属硫化矿尾矿库重金属污染及防治[J]. 有色金属, 2011, 63(1): 127−130.

    HUANG Y F. Heavy metals pollution and prevention in two tailing dams closure[J]. Nonferrous Metals, 2011, 63(1): 127−130.

    [7]

    PARADELO R, VILLADA A, BARRAL M T. Reduction of the shortterm availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 98−104. doi: 10.1016/j.jhazmat.2011.01.074

    [8]

    AHN J S, CHON C M, MOON H S, et al. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems[J]. Water Research, 2003, 37(10): 2478−2488. doi: 10.1016/S0043-1354(02)00637-1

    [9]

    LUDWIG R D, SMYTH D J A, BLOWES D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI−compost PRB[J]. Environmental Science & Technology, 2009, 43(6): 1970−1976.

    [10]

    PULS R W, BLOWES D W, GILLHAM R W. Long−term performance monitoring for a permeable reactive barrier at the US coast guard support center, Elizabeth City, North Carolina[J]. Journal of Hazardous Materials, 1999, 68(1/2): 109−124. doi: 10.1016/S0304-3894(99)00034-5

    [11]

    马龙. 高铁锰氨氮有机污染地下水的钢渣与沸石PRB活性材料修复试验研究[D]. 阜新: 辽宁工程技术大学, 2014.

    MA L. Experiment study on remediation of polluted groundwater of high iron manganese ammonia nitrogen and organic by PRB materials of slag and zeolite[D]. Fuxin: Liaoning Technical University, 2014.

    [12]

    刘瑞, 高艳娇. PRB填料的研究进展[J]. 工业安全与环保, 2017, 5(6): 72−77.

    LIU R, GAO Y J. Review of PRB filler[J]. Industrial Safety and Environmental Protection, 2017, 5(6): 72−77.

    [13]

    HAN Y S, GALLEGOS T J, DEMOND A H, et al. FeS−coated sand for removal of arsenic (Ⅲ) under anaerobic conditions in permeable reactive barriers[J]. Water Research, 2011, 45(2): 593−604. doi: 10.1016/j.watres.2010.09.033

    [14]

    张晓, 陈刚, 陈晨, 等, 天然沸石去除多种重金属的特性研究[J]. 有色金属(冶炼部分), 2020, 8(8): 8−16.

    ZHANG X, CHEN G, CHEN C, et al. Removal of multiple heavy metals from solution using natural zeolite[J]. Nonferrous Metal (Extractive Metallurgy), 2020, 8(8): 8−16.

    [15]

    刘水平, 黄国蕾. 天然沸石吸附电镀废水中重金属离子的实验研究[J]. 广东化工, 2022, 49(23): 162−164.

    LIU S P, HUANG G L. Experimental study on adsorption of heavy metal ions from electroplating wastewater by natural zeolite[J] Guangdong Chemical Industry, 2022, 49(23): 162−164.

    [16]

    李文静, 李军, 张彦灼, 等. NaCl 改性沸石对水中氨氮的吸附机制[J]. 中国环境科学, 2016, 36(12): 3567−3575.

    LI W J, LI J, ZHANG Y Z, et al. Adsorption mechanism of ammonium from aqueous solutions by NaCl modified zeolite[J]. China Environmental Science, 2016, 36(12): 3567−3575.

    [17]

    魏耀祖. 改性沸石动态吸附重金属铬的实验研究[D]. 北京: 中国地质大学(北京), 2016.

    WEI Y Z. Experimental study on dynamic adsorption of chromium by modified zeolite[D]. Beijing: China University of Geoscience, Beijing, 2016.

    [18]

    GHAEDI M, HEIDARPOUR S, KOKHDAN S N, et al. Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: kinetic and isotherm study of removal process[J]. Powder Technology, 2012, 228: 18−25. doi: 10.1016/j.powtec.2012.04.030

    [19]

    SANTOSA S J. Adsorption of congo eed dye on HDTMA surfactant−modified zeolite a synthesized from fly ash[J]. Defect & Diffusion Forum, 2018, 382: 307−311.

    [20]

    ZANIN E, SCAPINELLO J, OLIVEIRA M D, et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent[J]. Process Safety & Environmental Protection, 2017, 105: 194−200.

    [21]

    杜妍, 吴丽瑞, 聂广泽, 等. 载锆活性炭吸附水中对硝基苯酚和磷的研究[J]. 环境污染与防治, 2019, 41(11): 1266−1272.

    DU Y, WU L R, NEI G Z, et al. Adsorption of p−nitrophenol and phosphorus from water by zirconium loaded activated carbon[J]. Environmental Pollution & Control, 2019, 41(11): 1266−1272.

    [22]

    杨金燕, 杨肖娥, 何振立, 等. 土壤中铅的吸附−解吸行为研究进展[J]. 生态环境学报, 2005, 14(1): 102−107.

    YANG J Y, YANG X E, HE Z L, et al. Advance in the studies of Pb adsorption and desorption in soils[J]. Ecology and Environmnet, 2005, 14(1): 102−107.

    [23]

    王云波, 谭万春. 沸石的结构特征及在给水处理中的应用[J]. 净水技术, 2007, 26(2): 21−24.

    WANG Y B, TAN W C. Study on the structure character of zeolite and its application in water treatment[J]. Water Purification Technology, 2007, 26(2): 21−24.

    [24]

    陈静娴, 陈红红, 李晓华, 等. 载锆壳聚糖−沸石复合剂去除水中F的吸附特征研究[J]. 离子交换与吸附, 2017, 33(6): 537−546.

    CHEN J X, CHEN H H, LI X H, et al. Adsorption characteristics of chitosan loaded zirconium−zeolite composite adsorbents for removal of F from water[J]. Ion Exchange and Adsorption, 2017, 33(6): 537−546.

    [25]

    陶世杰. 赤峰沸石改性及其吸附Pb2+、Cu2+的研究[D]. 沈阳: 东北大学, 2009.

    TAO S J. The modification of Chifeng zeolite and adsorption of Pb2+ and Cu2+[D]. Shenyang: Northeastern University, 2009.

  • 加载中

(10)

(4)

计量
  • 文章访问数:  180
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2023-11-13
刊出日期:  2024-02-15

目录