-
摘要:
矿产资源开采对国家安全和经济至关重要,随着浅部矿产资源逐渐减少,深部开采已上升为国家战略。充填采矿法因其安全性高和对地表环境影响较小等优势,已逐渐成为地下开采的首选方法。确定充填体的合理强度是解决充填采矿安全和经济平衡问题的关键,是充填采矿技术成功应用和健康发展的核心问题。论文梳理了胶凝剂、灰砂配比、充填骨料、养护环境、接触面特性等因素对充填体强度的影响规律,归纳了经验类比法、力学模型法、数值分析法、人工智能法等充填体强度设计方法,综述了充填体强度需求研究现状,提出了深部充填体强度需求计算新思路。旨在完善深部充填体强度需求计算理论,优化矿山充填体强度设计,推动深部金属矿山充填开采的研究与应用。
Abstract:The exploitation of mineral resources is vital to national security and the economy, and with the gradual decline of shallow mineral resources, deep mining has risen to the level of a national strategy. Backfill has gradually become the preferred method of underground mining due to its advantages such as high safety and low impact on the surface environment. Determining the reasonable strength of the backfill is the key to solving the problem of balancing the safety and economy of backfill mining, and it is the core issue for the successful application and healthy development of backfill mining technology. The influence of factors such as cementitious agents, lime sand ratio, backfill aggregates, curing environment, and contact surface characteristics on the backfill strength are sorted out. The backfill strength design methods such as empirical analogy, mechanical model, numerical analysis, and artificial intelligence are summarized. The current research status of backfill strength requirement are summarized, and new ideas suitable for calculating the deep backfill strength requirement is proposed. It aims to improve the calculation theory of deep backfill strength demand, optimize the backfill strength design, and promote the research and application of deep metal mine backfill mining.
-
Key words:
- metal mine /
- backfill mining /
- backfill strength /
- demand model /
- influencing factor /
- design method
-
-
图 1 支持向量机结构示意图[55]
Figure 1.
图 2 神经网络的网络结构[61]
Figure 2.
图 3 不同深度充填体位移云图[50]
Figure 3.
表 1 矿山实际使用胶结充填体强度[42]
Table 1. Strength of cemented backfill actually used in mine
国别 矿山 高/m 长/m 宽/m 侧向暴露
面积/m2强度/MPa 中国 凡口铅锌矿 40 35 7 1400 2.50 金川镍矿 60 51 50 3060 2.50 白银深部铜矿 60 50~80 20 3900 1.00~5.00 安庆铜矿 120 40~60 15 6000 0.18~4.00 澳大利亚 芒特艾萨矿 100 40 30 4000 2.20 40 10 30 400 0.90 加拿大 若里达矿 65 11 25 715 9.50 南非 黑山矿物公司 70 28 45 1960 7.00 芬兰 洼马拉矿 50 40~70 5−30 2000~3500 1.50 威汉迪矿 100 60 − 6000 1.05 爱尔兰 塔拉铅锌矿 80 20~60 12.5 1600~4800 1.00~4.00 表 2 常用理论计算公式[46]
Table 2. Common theoretical calculation formulas
名称 公式 适用范围 注释 蔡嗣经经验公式 H2=α 用于考虑充填体高度对充填体
强度的影响H为胶结充填体的高度,m; 为胶结充填体的设计强度,MPa;
α为经验系数,当充填高度小于50 m时,建议取600,当充填高度大于50 m时,建议取1000Thomas计算法 =
考虑胶结充填体与围岩壁间的
摩擦力所产生的成拱作用为充填体强度,MPa;
γ为充填体容重,kN/m3;
h为充填体高度,m;b为充填体宽度,m卢平修正计算法 在Thomas计算方法的基础上
考虑充填体自身的强度特性k为侧压系数,k=1- ;α为充填体滑动面与水平面的夹角α=45°+φ/2;
为充填体与围岩的黏聚力和内摩擦角;C,φ为充填体黏聚力和内摩擦角
-
[1] 王俊. 空场嗣后充填连续开采胶结体强度模型及其应用[D]. 昆明: 昆明理工大学, 2017.
WANG J. Strength model of cemented body for continuous mining with subsequent filling in open stope and its application[D]. Kunming: Kunming University of Science and Technology, 2017.
[2] 赵兴东, 周鑫, 赵一凡, 等. 深部金属矿采动灾害防控研究现状与进展[J]. 中南大学学报(自然科学版), 2021, 52(8): 2522−2538.
ZHAO X D, ZHOU X, ZHAO Y F, et al. Present situation and progress of research on prevention and control of mining disasters in deep metal mines[J]. Journal of Central South University (Natural Science Edition), 2021, 52(8): 2522−2538.
[3] 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417−426.
CAI M F, XUE D L, REN F H. Present situation and development strategy of deep mining of metal mines[J]. Chinese Journal of Engineering, 2019, 41(4): 417−426.
[4] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283−1305.
XIE H P. Research progress of deep rock mechanics and mining theory[J]. Journal of Coal, 2019, 44(5): 1283−1305.
[5] 程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44(1): 11−25.
CHENG H Y, WU A X, WU S C, et al. Research status and development trend of solid waste filling in metal mines[J]. Chinese Journal of Engineering, 2022, 44(1): 11−25.
[6] 郭利杰, 刘光生, 马青海, 等. 金属矿山充填采矿技术应用研究进展[J]. 煤炭学报, 2022, 47(12): 4182−4200.
GUO L J, LIU G S, MA Q H, et al. Research progress on application of filling mining technology in metal mines[J]. Journal of Coal, 2022, 47(12): 4182−4200.
[7] JIANG H Q, QI Z J, YILMAZ E, et al. Effectiveness of alkali−activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills[J]. Construction and Building Materials, 2019, 218: 689−700. doi: 10.1016/j.conbuildmat.2019.05.162
[8] SUN Q, LI B, TIAN S, et al. Creep properties of geopolymer cemented coal gangue−fly ash backfill under dynamic disturbance[J]. Construction and Building Materials, 2018, 191: 644−654. doi: 10.1016/j.conbuildmat.2018.10.055
[9] WU D, DENG T F, ZHAO R K. A coupled THMC modeling application of cemented coal gangue−fly ash backfill[J]. Construction and Building Materials, 2018, 158: 326−336. doi: 10.1016/j.conbuildmat.2017.10.009
[10] 巴蕾, 韦寒波, 温震江, 等. 废石−铜渣尾砂混合骨料配比优化试验[J]. 矿业研究与开发, 2020, 40(2): 31−37.
BA L, WEI H B, WEN Z J, et al. Optimization test of mixed aggregate ratio of waste rock−copper slag tailings[J]. Mining Research and Development, 2020, 40(2): 31−37.
[11] WANG S, SONG X P, WEI M L, et al. Strength characteristics and microstructure evolution of cemented tailings backfill with rice straw ash as an alternative binder[J]. Construction and Building Materials, 2021, 297.
[12] MUNSHI S, SHARMA P R. Utilization of rice straw ash as a mineral admixture in construction work[J]. Materials Today: Proceedings, 2019, 11637−644.
[13] 李杰林, 李奥, 郝建璋, 等. 提钛炉渣−铁基全尾砂−水泥胶结充填体配比实验研究[J]. 矿业科学学报, 2023, 8(6): 838−846.
LI J L, LI A, HAO J Z, et al. Experimental sludy on the ratio between Ti−bearing blat fumace slagiron−based full tailing sand and cement in cementitious filling[J]. Joumal of Mining Seienee and Technology, 2023, 8(6): 838−846.
[14] 唐亚男, 付建新, 宋卫东, 等. 分层胶结充填体力学特性及裂纹演化规律[J]. 工程科学学报, 2020, 42(10): 1286−1298.
TANG Y N, FU J X, SONG W D, et al. Mechanical characteristics and crack evolution law of layered cemented filling[J]. Chinese Journal of Engineering, 2020, 42(10): 1286−1298.
[15] 魏晓明, 郭利杰, 陈鑫政, 等. 金厂河多金属矿尾砂胶结充填试验研究[J]. 矿业研究与开发, 2020, 40(6): 42−46.
WEI X M, GUO L J, CHEN X Z, et al. Experimental study on cemented filling of tailings in Jinchanghe polymetallic mine[J]. Mining Research and Development, 2020, 40(6): 42−46.
[16] 熊朝辉, 谭玉叶, 楚立申, 等. 高阶段嗣后分层胶结充填体强度及结构优化研究[J]. 金属矿山, 2022(3): 35−42.
XIONG C H, TAN Y Y, CU L S, et al. Study on strength and structure optimization of high−stage subsequent layered cemented backfill[J]. Metal Mine, 2022(3): 35−42.
[17] 汪杰, 宋卫东, 谭玉叶, 等. 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731−1739.
WANG J, SONG W D, TAN Y Y, et al. Damage constitutive model and strength criterion of horizontal layered cemented backfill[J]. Rock and Soil Mechanics, 2019, 40(5): 1731−1739.
[18] 杨仕教, 苏帅, 王富林. 高浓度全尾砂胶结充填体强度规律分析[J]. 硅酸盐通报, 2019, 38(3): 847−852.
YANG S J, SU S, WANG F L. Analysis of strength law of cemented backfill with high concentration full tailings[J]. Bulletin of The Chinese Ceramic Society, 2019, 38(3): 847−852.
[19] 胡凡, 彭亮, 仵峰峰, 等. 基于BP神经网络模型的充填体强度值预测[J]. 有色金属(矿山部分), 2021, 73(6): 60−65.
HU F, PENG L, WU F F, et al. Prediction of strength value of backfill based on BP neural network model[J]. Nonferrous Metal (Mine Section), 2021, 73(6): 60−65.
[20] 齐冲冲, 杨星雨, 李桂臣, 等. 新一代人工智能在矿山充填中的应用综述与展望[J]. 煤炭学报, 2021, 46(2): 688−700.
QI C C, YANG X Y, LI G C, et al. Review and prospect of the application of new generation artificial intelligence in mine filling[J]. Journal of Coal, 2021, 46(2): 688−700.
[21] 董培鑫, 王忠红, 高谦, 等. 鞍钢矿山全尾砂新型充填胶凝材料配方正交试验与优化[J]. 矿业研究与开发, 2015, 35(12): 47−50.
DONG P X, WANG Z H, GAO Q, et al. Orthogonal test and optimization of new filling cementing material formula for all tailings in angang mine[J]. Mining Research and Development, 2015, 35(12): 47−50.
[22] 王明强. 齐大山铁矿选矿厂重选尾矿回收利用研究[J]. 工程建设, 2018, 50(5): 6−10.
WANG M Q. Study on recovery and utilization of gravity tilings in Qidashan iron mine concentrator[J]. Engineering Construction, 2018, 50(5): 6−10.
[23] 李茂辉. 低活性水淬渣基早强充填胶凝材料开发与水化机理研究[D]. 北京: 北京科技大学, 2015.
LI M H. Development and hydration mechanism of low−activity water−quenched slag−based early−strength filling cementing material[D]. Beijing: University of Science and Technology Beijing, 2015.
[24] 刘丹. 铁尾矿粉泡沫混凝土配合比及其性能的试验研究[D]. 阜新: 辽宁科技大学, 2020.
LIU D. Experimental study on mix proportion and performance of iron tailings powder foam concrete[D]. Fuxin: Liaoning University of Science and Technology, 2020.
[25] 王有团. 金川低成本充填胶凝材料及高浓度料浆管输特性研究[D]. 北京: 北京科技大学, 2016.
WANG Y T. Study on pipeline transportation characteristics of low−cost filling cementitious materials and high−concentration slurry in Jinchuan[D]. Beijing: University of Science and Technology Beijing, 2016.
[26] 王晓宇, 乔登攀. 废石−全尾砂高浓度充填料浆管输阻力影响因素分析[J]. 有色金属(矿山部分), 2010, 62(4): 61−65.
WANG X Y, QIAO D P. Analysis of influencing factors on pipeline transportation resistance of waste rock−tailings high concentration filling slurry[J]. Nonferrous Metal (Mine Section), 2010, 62(4): 61−65.
[27] 王楚涵, 韩亮, 田晓曦, 等. 细颗粒尾砂含量对充填体强度影响的试验研究[J]. 矿业研究与开发, 2019, 39(5): 99−103.
WANG C H, HAN L, TIAN X X, et al. Experimental study on the influence of fine tailings content on the strength of filling body[J]. Mining Research and Development, 2019, 39(5): 99−103.
[28] 李洪宝, 甘德清, 鄂鑫雨, 等. 尾砂粒度对充填体早期强度影响的试验研究[J]. 金属矿山, 2021(3): 34−39.
LI H B, GAN D Q, E X Y, et al. Experimental study on the influence of tailings particle size on the early strength of backfill[J]. Metal Mine, 2021(3): 34−39.
[29] LIU G S, LI L, YAO M K, et al. An investigation of the uniaxial compressive strength of a cemented hydraulic backfill made of alluvial sand[J]. Minerals, 2017, 7(1).
[30] 刘超, 韩斌, 孙伟, 等. 高寒地区废石破碎胶结充填体强度特性试验研究与工业应用[J]. 岩石力学与工程学报, 2015, 34(1): 139−147.
LIU C, HAN B, SUN W, et al. Experimental study and industrial application of strength characteristics of waste rock broken cemented backfill in alpine region[J]. Journal of Rock Mechanics and Engineering, 2015, 34(1): 139−147.
[31] 焦国芮, 郝益民, 杨子龙, 等. 胶结充填体受温度作用的影响分析[J]. 矿业研究与开发, 2020, 40(3): 46−49.
JIAO G R, HAO Y M, YANG Z L, et al. Analysis of the influence of temperature on cemented backfill[J]. Mining Research and Development, 2020, 40(3): 46−49.
[32] 王炳文, 甘肃, 董平波, 等. 高寒地区尾砂胶结充填体固结特性试验研究[J]. 中国有色金属学报, 2022, 32(8): 2446−2457.
WANG B W, GAN S, DONG P B, et al. Experimental study on consolidation characteristics of tailings cemented backfill in alpine region[J]. The Chinses Journal of Nonferrous Metals, 2022, 32(8): 2446−2457.
[33] 徐文彬, 万昌兵, 田喜春. 温度裂隙对充填体强度耦合效应及裂纹扩展模式[J]. 采矿与安全工程学报, 2018, 35(3): 612−619.
XU W B, WAN C B, TIAN X C. Coupling effect of temperature crack on strength of filling body and crack propagation mode[J]. Journal of Mining and Safety Engineering, 2018, 35(3): 612−619.
[34] 郑迪, 薛改利, 宋卫东. 基于不同养护龄期的充填体强度多元线性回归分析[J]. 矿业研究与开发, 2018, 38(6): 21−24.
ZHENG D, XUE G L, SONG W D. Multivariate linear regression analysis of backfill strength based on different curing ages[J]. Mining Research and Development, 2018, 38(6): 21−24.
[35] 王永岩, 黄飒, 于卓群, 等. 考虑龄期的全尾砂胶结充填体强度预测模型建立及试验验证[J]. 煤炭技术, 2021, 40(8): 1−3.
WANG Y Y, HUANG S, YU Z Q, et al. Establishment and experimental verification of strength prediction model of cemented backfill with full tailings considering age[J]. Coal Technology, 2021, 40(8): 1−3.
[36] 张福学, 康志强, 辛东夫. 某铁矿胶结充填体特性试验及配比研究[J]. 矿业研究与开发, 2020, 40(2): 38−41.
ZHANG F X, KANG Z Q, XIN D F. Experimental study on characteristics and proportioning of cemented backfill in an iron mine[J]. Mining Research and Development, 2020, 40(2): 38−41.
[37] 卢宏建, 王奕仁, 张友志, 等. 考虑接触面倾角的充填体−围岩组合体能量特征分析[J]. 金属矿山, 2022(8): 9−19.
LU H J, WANG Y Y, ZHANG Y Z, et al. Analysis of energy characteristics of backfill−surrounding rock combination considering contact angle[J]. Metal Mine, 2022(8): 9−19.
[38] LU H J, WANG Y R, GAN D Q, et al. Numerical investigation of the mechanical behavior of the backfill-rock composite structure under triaxial compression[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(5): 802−812.
[39] WANG Y R, LU H J, WU J. Experimental investigation on strength and failure characteristics of cemented paste backfill-rock composite under uniaxial compression[J]. Construction and Building Materials, 2021, 304: 1−14.
[40] 王明旭. 胶结充填体与围岩复合体的力学特性[J]. 煤炭学报, 2019, 44(2): 445−453.
WANG M X. Mechanical properties of cemented backfill and surrounding rock complex[J]. Journal of Coal, 2019, 44(2): 445−453.
[41] 杨建桥. 某矿自立胶结充填体的稳定性研究[D]. 昆明: 昆明理工大学, 2012.
YANG J Q. Study on stability of self−supporting cemented backfill in a mine[D]. Kunming: Kunming University of Science and Technology, 2012.
[42] 蔡嗣经. 矿山充填力学基础[M]. 北京: 冶金工业出版社, 2009.
CAI S J. Fundamentals of mine filling mechanics[M]. Beijing: Metallurgical Industry Press, 2009.
[43] 陈玉宾, 乔登攀, 孙宏生, 等. 上向水平分层充填体的强度模型及应用[J]. 金属矿山, 2014(10): 27−31.
CHEN Y B, QIAO D P, SUN H S, et al. Strength model of upward horizontal layered backfill and its application[J]. Metal Mine, 2014(10): 27−31.
[44] 卢平. 确定胶结充填体强度的理论与实践[J]. 黄金, 1992(3): 14−19.
LU P. Theory and practice of determining the strength of cemented backfill[J]. Gold, 1992(3): 14−19.
[45] 卢宏建, 武晓军, 蔡晓盛, 等. 胶结充填体—围岩组合体剪切强度与破坏特征[J]. 金属矿山, 2023(5): 97−103.
LU H J, WU X J, CAI X S, et al. Shear strength and failure characteristics of cemented backfill−surrounding rock combination[J]. Metal Mine, 2023(5): 97−103.
[46] 李电辉, 孙德胜. 三鑫矿业公司充填体强度与采矿方法匹配研究[J]. 黄金, 2013, 34(6): 39−42.
LI D H, SUN D S. Study on matching between filling body strength and mining method in SanxCLmpany[J]. Gold, 2013, 34(6): 39−42.
[47] ABTIN J, MICHEL A, LI L. Three−dimensional stress state in inclined backfilled stopes obtained from numerical simulations and new closed−from solution[J]. Canadian Geotechnical Journal, 2018, 55(6): 810−828. doi: 10.1139/cgj-2016-0385
[48] 卢宏建, 王奕仁, 武婕, 等. 充填体−围岩组合体力学特性及破裂演化特征RFPA3D模拟[J]. 金属矿山, 2022(6): 1−8.
LU H J, WANG Y R, WU J, et al. Mechanical characteristics and fracture evolution characteristics of backfill−surrounding rock combination RFPA3D simulation[J]. Metal Mine, 2022(6): 1−8.
[49] 付玉华, 占飞, 余信橙. 高阶段采场充填体稳定性的数值分析[J]. 中国矿业, 2017, 26(7): 111−115.
FU Y H, ZHAN F, YU X C. Numerical analysis of stability of filling body in high−stage stope[J]. China Mining, 2017, 26(7): 111−115.
[50] WANG R F, ZENG F T, LI L. Stability analyses of side-exposed backfill considering mine depth and extraction of adjacent stope[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142.
[51] 卢宏建, 武晓军, 武婕. 考虑接触面特性与采充时序的胶结充填体稳定性评价[J]. 金属矿山, 2023(4): 1−7.
LU H J, WU X J, WU J. Stability evaluation of cemented backfill considering contact surface characteristics and mining and filling sequence[J]. Metal Mine, 2023(4): 1−7.
[52] QI C, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives[J]. Minerals Engineering, 2019, 144: 106025. doi: 10.1016/j.mineng.2019.106025
[53] 秦原, 张斌斌, 谢刚. SVM模型预测充填体强度[J]. 江西建材, 2020(7): 10−12+14.
QIN Y, ZHANG B B, XIE G. Prediction of backfill strength by SVM model[J]. Jiangxi Building Materials, 2020(7): 10−12+14.
[54] LIU J D, LI G C, YANG S, et al. Prediction models for evaluating the strength of cemented paste backfill: a comparative study[J]. Minerals, 2020, 10(11).
[55] 王志军, 吕文生, 杨鹏, 等. 充填体强度的支持向量机设计匹配模型[J]. 金属矿山, 2016(11): 34−38.
WANG Z J, LV W S, YANG P, et al. Support vector machine design matching model of filling body strength[J]. Metal Mine, 2016(11): 34−38.
[56] 董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032−1036.
DONG Y, YANG Z Q, GAO Q. Prediction of the strength of backfill by orthogonal test combined with BP neural network model[J]. Materials Reports, 2018, 32(6): 1032−1036.
[57] LI E, ZHOU J, SHI X Z, et al. Developing a hybrid model of salp swarm algorithm−based support vector machine to predict the strength of fiber−reinforced cemented paste backfill[J]. Engineering with Computers: 1 −22[2021 −02 − 02].
[58] 白春红. 基于SVM模型的充填体强度与采场稳定性需求智能匹配研究[J]. 中国矿业, 2019, 28(11): 104−108.
BAI C H. Research on intelligent matching of backfill strength and stope stability demand based on SVM model[J]. China Mining Magazine, 2019, 28(11): 104−108.
[59] 周士霖. 深部开采充填体稳定性及与岩体智能匹配研究[D]. 长沙: 中南大学, 2012.
ZHOU S L. Study on stability of deep mining backfill and its intelligent matching with rock mass[D]. Changsha: Central South University, 2012.
[60] 王志会, 吴爱祥, 王洪江. 基于PSO−BPNN的充填体围岩界面抗剪强度预测[J]. 矿业研究与开发, 2020, 40(3): 130−134.
WANG Z H, WU A X, WANG H J. Prediction of shear strength of surrounding rock interface of backfill based on PSO−BPNN[J]. Mining Research and Development, 2020, 40(3): 130−134.
[61] ZHANG B, LI K Q, ZHANG S Q, et al. Strength prediction and application of cemented paste backfill based on machine learning and strength correction[J]. Heliyon, 2022, 8(8): e10338−e10338. doi: 10.1016/j.heliyon.2022.e10338
[62] MITCHELL R J, OLSEN R S, SMITH J D. Model studies on cemented tailings used in mine backfill[J]. Canadian Geotechnical Journal, 2011, 19(1).
[63] LI L. Generalized solution for mining backfill design[J]. International Journal of Geomechanics, 2014, 14(3).
[64] LIU Z X, LAN M, XIAO S Y, et al. Damage failure of cemented backfill and its reasonable match with rock mass[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3).
[65] YANG P, LI L, AUBERTIN M. A new solution to assess the required strength of mine backfill with a vertical exposure[J]. International Journal of Geomechanics, 2017, 17(10).
[66] ZHAO X, FOURIE A, QI C C. An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(10): 1206−16. doi: 10.1007/s12613-019-1885-7
[67] 张常光, 蔡明明, 祁航, 等. 考虑充填顺序与后壁黏结力的采场充填计算统一解[J]. 岩石力学与工程学报, 2019, 38(2): 226−36.
ZHANG C G, CAI M M, QI H, et al. Unified solution of stope filling calculation considering filling sequence and cohesive force of back wall[J]. Journal of Rock Mechanics and Engineering, 2019, 38(2): 226−36.
[68] 王俊, 乔登攀, 韩润生, 等. 阶段空场嗣后充填胶结体强度模型及应用[J]. 岩土力学, 2019, 40(3): 1105−12.
WANG J, QIAO D P, HAN R S, et al. Strength model of cemented body after filling in stage open stope and its application[J]. Rock and Soil Mechanics, 2019, 40(3): 1105−12.
[69] 杨磊, 邱景平, 孙晓刚, 等. 阶段嗣后胶结充填体矿柱强度模型研究与应用[J]. 中南大学学报(自然科学版), 2018, 49(9): 2316−22.
YANG L, QIU J P, SUN X G, et al. Study and application of pillar strength model of cemented backfill after stage[J]. Journal of Central South University (Natural Science Edition), 2018, 49(9): 2316−22.
[70] 刘光生, 杨小聪, 郭利杰. 阶段空场嗣后充填体三维拱应力及强度需求模型[J]. 煤炭学报, 2019, 44(5): 1391−403.
LIU G S, YANG X C, GUO L J. Three−dimensional arch stress and strength demand model of filling body after stage open stope[J]. Journal of Coal, 2019, 44(5): 1391−403.
-