金属矿山充填体强度需求发展现状与展望

卢宏建, 夏传祥, 武立彬, 牟超, 刘志义. 金属矿山充填体强度需求发展现状与展望[J]. 矿产保护与利用, 2024, 44(2): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2024.02.001
引用本文: 卢宏建, 夏传祥, 武立彬, 牟超, 刘志义. 金属矿山充填体强度需求发展现状与展望[J]. 矿产保护与利用, 2024, 44(2): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2024.02.001
LU Hongjian, XIA Chuanxiang, WU Libin, MOU Chao, LIU Zhiyi. Development Status and Prospect of Strength Demand for Backfill in Metal Mines[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2024.02.001
Citation: LU Hongjian, XIA Chuanxiang, WU Libin, MOU Chao, LIU Zhiyi. Development Status and Prospect of Strength Demand for Backfill in Metal Mines[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2024.02.001

金属矿山充填体强度需求发展现状与展望

  • 基金项目: 国家自然科学基金项目(52204134);河北省自然科学基金项目(E2021209006);河北省中央引导地方科技专项项目(236Z4105G)
详细信息
    作者简介: 卢宏建(1980—),男,博士,教授,主要从事金属矿山充填开采、矿山采动岩石力学方向教学与研究工作;E-mail:luhongjian@ncst.edu.cn
    通讯作者: 夏传祥(1998—),男,河南信阳人,硕士研究生,研究方向为采矿工艺理论与技术;E-mail:1765902958@qq.com
  • 中图分类号: TD853.34

Development Status and Prospect of Strength Demand for Backfill in Metal Mines

More Information
  • 矿产资源开采对国家安全和经济至关重要,随着浅部矿产资源逐渐减少,深部开采已上升为国家战略。充填采矿法因其安全性高和对地表环境影响较小等优势,已逐渐成为地下开采的首选方法。确定充填体的合理强度是解决充填采矿安全和经济平衡问题的关键,是充填采矿技术成功应用和健康发展的核心问题。论文梳理了胶凝剂、灰砂配比、充填骨料、养护环境、接触面特性等因素对充填体强度的影响规律,归纳了经验类比法、力学模型法、数值分析法、人工智能法等充填体强度设计方法,综述了充填体强度需求研究现状,提出了深部充填体强度需求计算新思路。旨在完善深部充填体强度需求计算理论,优化矿山充填体强度设计,推动深部金属矿山充填开采的研究与应用。

  • 加载中
  • 图 1  支持向量机结构示意图[55]

    Figure 1. 

    图 2  神经网络的网络结构[61]

    Figure 2. 

    图 3  不同深度充填体位移云图[50]

    Figure 3. 

    图 4  有限元模型目标充填体信息提取线点布设

    Figure 4. 

    图 5  充填体信息网格重构

    Figure 5. 

    图 6  目标充填体强度需求迭代搜索计算模型和流程

    Figure 6. 

    表 1  矿山实际使用胶结充填体强度[42]

    Table 1.  Strength of cemented backfill actually used in mine

    国别 矿山 高/m 长/m 宽/m 侧向暴露
    面积/m2
    强度/MPa
    中国 凡口铅锌矿 40 35 7 1400 2.50
    金川镍矿 60 51 50 3060 2.50
    白银深部铜矿 60 50~80 20 3900 1.00~5.00
    安庆铜矿 120 40~60 15 6000 0.18~4.00
    澳大利亚 芒特艾萨矿 100 40 30 4000 2.20
    40 10 30 400 0.90
    加拿大 若里达矿 65 11 25 715 9.50
    南非 黑山矿物公司 70 28 45 1960 7.00
    芬兰 洼马拉矿 50 40~70 5−30 2000~3500 1.50
    威汉迪矿 100 60 6000 1.05
    爱尔兰 塔拉铅锌矿 80 20~60 12.5 1600~4800 1.00~4.00
    下载: 导出CSV

    表 2  常用理论计算公式[46]

    Table 2.  Common theoretical calculation formulas

    名称 公式 适用范围 注释
    蔡嗣经经验公式 H2 用于考虑充填体高度对充填体
    强度的影响
    H为胶结充填体的高度,m;
    为胶结充填体的设计强度,MPa;
    α为经验系数,当充填高度小于50 m时,建议取600,当充填高度大于50 m时,建议取1000
    Thomas计算法 = 考虑胶结充填体与围岩壁间的
    摩擦力所产生的成拱作用
    为充填体强度,MPa;
    γ为充填体容重,kN/m3
    h为充填体高度,m;b为充填体宽度,m
    卢平修正计算法 在Thomas计算方法的基础上
    考虑充填体自身的强度特性
    为侧压系数,=1-α为充填体滑动面与水平面的夹角α=45°+φ/2;为充填体与围岩的黏聚力和内摩擦角;Cφ为充填体黏聚力和内摩擦角
    下载: 导出CSV
  • [1]

    王俊. 空场嗣后充填连续开采胶结体强度模型及其应用[D]. 昆明: 昆明理工大学, 2017.

    WANG J. Strength model of cemented body for continuous mining with subsequent filling in open stope and its application[D]. Kunming: Kunming University of Science and Technology, 2017.

    [2]

    赵兴东, 周鑫, 赵一凡, 等. 深部金属矿采动灾害防控研究现状与进展[J]. 中南大学学报(自然科学版), 2021, 52(8): 2522−2538.

    ZHAO X D, ZHOU X, ZHAO Y F, et al. Present situation and progress of research on prevention and control of mining disasters in deep metal mines[J]. Journal of Central South University (Natural Science Edition), 2021, 52(8): 2522−2538.

    [3]

    蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417−426.

    CAI M F, XUE D L, REN F H. Present situation and development strategy of deep mining of metal mines[J]. Chinese Journal of Engineering, 2019, 41(4): 417−426.

    [4]

    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283−1305.

    XIE H P. Research progress of deep rock mechanics and mining theory[J]. Journal of Coal, 2019, 44(5): 1283−1305.

    [5]

    程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44(1): 11−25.

    CHENG H Y, WU A X, WU S C, et al. Research status and development trend of solid waste filling in metal mines[J]. Chinese Journal of Engineering, 2022, 44(1): 11−25.

    [6]

    郭利杰, 刘光生, 马青海, 等. 金属矿山充填采矿技术应用研究进展[J]. 煤炭学报, 2022, 47(12): 4182−4200.

    GUO L J, LIU G S, MA Q H, et al. Research progress on application of filling mining technology in metal mines[J]. Journal of Coal, 2022, 47(12): 4182−4200.

    [7]

    JIANG H Q, QI Z J, YILMAZ E, et al. Effectiveness of alkali−activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills[J]. Construction and Building Materials, 2019, 218: 689−700. doi: 10.1016/j.conbuildmat.2019.05.162

    [8]

    SUN Q, LI B, TIAN S, et al. Creep properties of geopolymer cemented coal gangue−fly ash backfill under dynamic disturbance[J]. Construction and Building Materials, 2018, 191: 644−654. doi: 10.1016/j.conbuildmat.2018.10.055

    [9]

    WU D, DENG T F, ZHAO R K. A coupled THMC modeling application of cemented coal gangue−fly ash backfill[J]. Construction and Building Materials, 2018, 158: 326−336. doi: 10.1016/j.conbuildmat.2017.10.009

    [10]

    巴蕾, 韦寒波, 温震江, 等. 废石−铜渣尾砂混合骨料配比优化试验[J]. 矿业研究与开发, 2020, 40(2): 31−37.

    BA L, WEI H B, WEN Z J, et al. Optimization test of mixed aggregate ratio of waste rock−copper slag tailings[J]. Mining Research and Development, 2020, 40(2): 31−37.

    [11]

    WANG S, SONG X P, WEI M L, et al. Strength characteristics and microstructure evolution of cemented tailings backfill with rice straw ash as an alternative binder[J]. Construction and Building Materials, 2021, 297.

    [12]

    MUNSHI S, SHARMA P R. Utilization of rice straw ash as a mineral admixture in construction work[J]. Materials Today: Proceedings, 2019, 11637−644.

    [13]

    李杰林, 李奥, 郝建璋, 等. 提钛炉渣−铁基全尾砂−水泥胶结充填体配比实验研究[J]. 矿业科学学报, 2023, 8(6): 838−846.

    LI J L, LI A, HAO J Z, et al. Experimental sludy on the ratio between Ti−bearing blat fumace slagiron−based full tailing sand and cement in cementitious filling[J]. Joumal of Mining Seienee and Technology, 2023, 8(6): 838−846.

    [14]

    唐亚男, 付建新, 宋卫东, 等. 分层胶结充填体力学特性及裂纹演化规律[J]. 工程科学学报, 2020, 42(10): 1286−1298.

    TANG Y N, FU J X, SONG W D, et al. Mechanical characteristics and crack evolution law of layered cemented filling[J]. Chinese Journal of Engineering, 2020, 42(10): 1286−1298.

    [15]

    魏晓明, 郭利杰, 陈鑫政, 等. 金厂河多金属矿尾砂胶结充填试验研究[J]. 矿业研究与开发, 2020, 40(6): 42−46.

    WEI X M, GUO L J, CHEN X Z, et al. Experimental study on cemented filling of tailings in Jinchanghe polymetallic mine[J]. Mining Research and Development, 2020, 40(6): 42−46.

    [16]

    熊朝辉, 谭玉叶, 楚立申, 等. 高阶段嗣后分层胶结充填体强度及结构优化研究[J]. 金属矿山, 2022(3): 35−42.

    XIONG C H, TAN Y Y, CU L S, et al. Study on strength and structure optimization of high−stage subsequent layered cemented backfill[J]. Metal Mine, 2022(3): 35−42.

    [17]

    汪杰, 宋卫东, 谭玉叶, 等. 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731−1739.

    WANG J, SONG W D, TAN Y Y, et al. Damage constitutive model and strength criterion of horizontal layered cemented backfill[J]. Rock and Soil Mechanics, 2019, 40(5): 1731−1739.

    [18]

    杨仕教, 苏帅, 王富林. 高浓度全尾砂胶结充填体强度规律分析[J]. 硅酸盐通报, 2019, 38(3): 847−852.

    YANG S J, SU S, WANG F L. Analysis of strength law of cemented backfill with high concentration full tailings[J]. Bulletin of The Chinese Ceramic Society, 2019, 38(3): 847−852.

    [19]

    胡凡, 彭亮, 仵峰峰, 等. 基于BP神经网络模型的充填体强度值预测[J]. 有色金属(矿山部分), 2021, 73(6): 60−65.

    HU F, PENG L, WU F F, et al. Prediction of strength value of backfill based on BP neural network model[J]. Nonferrous Metal (Mine Section), 2021, 73(6): 60−65.

    [20]

    齐冲冲, 杨星雨, 李桂臣, 等. 新一代人工智能在矿山充填中的应用综述与展望[J]. 煤炭学报, 2021, 46(2): 688−700.

    QI C C, YANG X Y, LI G C, et al. Review and prospect of the application of new generation artificial intelligence in mine filling[J]. Journal of Coal, 2021, 46(2): 688−700.

    [21]

    董培鑫, 王忠红, 高谦, 等. 鞍钢矿山全尾砂新型充填胶凝材料配方正交试验与优化[J]. 矿业研究与开发, 2015, 35(12): 47−50.

    DONG P X, WANG Z H, GAO Q, et al. Orthogonal test and optimization of new filling cementing material formula for all tailings in angang mine[J]. Mining Research and Development, 2015, 35(12): 47−50.

    [22]

    王明强. 齐大山铁矿选矿厂重选尾矿回收利用研究[J]. 工程建设, 2018, 50(5): 6−10.

    WANG M Q. Study on recovery and utilization of gravity tilings in Qidashan iron mine concentrator[J]. Engineering Construction, 2018, 50(5): 6−10.

    [23]

    李茂辉. 低活性水淬渣基早强充填胶凝材料开发与水化机理研究[D]. 北京: 北京科技大学, 2015.

    LI M H. Development and hydration mechanism of low−activity water−quenched slag−based early−strength filling cementing material[D]. Beijing: University of Science and Technology Beijing, 2015.

    [24]

    刘丹. 铁尾矿粉泡沫混凝土配合比及其性能的试验研究[D]. 阜新: 辽宁科技大学, 2020.

    LIU D. Experimental study on mix proportion and performance of iron tailings powder foam concrete[D]. Fuxin: Liaoning University of Science and Technology, 2020.

    [25]

    王有团. 金川低成本充填胶凝材料及高浓度料浆管输特性研究[D]. 北京: 北京科技大学, 2016.

    WANG Y T. Study on pipeline transportation characteristics of low−cost filling cementitious materials and high−concentration slurry in Jinchuan[D]. Beijing: University of Science and Technology Beijing, 2016.

    [26]

    王晓宇, 乔登攀. 废石−全尾砂高浓度充填料浆管输阻力影响因素分析[J]. 有色金属(矿山部分), 2010, 62(4): 61−65.

    WANG X Y, QIAO D P. Analysis of influencing factors on pipeline transportation resistance of waste rock−tailings high concentration filling slurry[J]. Nonferrous Metal (Mine Section), 2010, 62(4): 61−65.

    [27]

    王楚涵, 韩亮, 田晓曦, 等. 细颗粒尾砂含量对充填体强度影响的试验研究[J]. 矿业研究与开发, 2019, 39(5): 99−103.

    WANG C H, HAN L, TIAN X X, et al. Experimental study on the influence of fine tailings content on the strength of filling body[J]. Mining Research and Development, 2019, 39(5): 99−103.

    [28]

    李洪宝, 甘德清, 鄂鑫雨, 等. 尾砂粒度对充填体早期强度影响的试验研究[J]. 金属矿山, 2021(3): 34−39.

    LI H B, GAN D Q, E X Y, et al. Experimental study on the influence of tailings particle size on the early strength of backfill[J]. Metal Mine, 2021(3): 34−39.

    [29]

    LIU G S, LI L, YAO M K, et al. An investigation of the uniaxial compressive strength of a cemented hydraulic backfill made of alluvial sand[J]. Minerals, 2017, 7(1).

    [30]

    刘超, 韩斌, 孙伟, 等. 高寒地区废石破碎胶结充填体强度特性试验研究与工业应用[J]. 岩石力学与工程学报, 2015, 34(1): 139−147.

    LIU C, HAN B, SUN W, et al. Experimental study and industrial application of strength characteristics of waste rock broken cemented backfill in alpine region[J]. Journal of Rock Mechanics and Engineering, 2015, 34(1): 139−147.

    [31]

    焦国芮, 郝益民, 杨子龙, 等. 胶结充填体受温度作用的影响分析[J]. 矿业研究与开发, 2020, 40(3): 46−49.

    JIAO G R, HAO Y M, YANG Z L, et al. Analysis of the influence of temperature on cemented backfill[J]. Mining Research and Development, 2020, 40(3): 46−49.

    [32]

    王炳文, 甘肃, 董平波, 等. 高寒地区尾砂胶结充填体固结特性试验研究[J]. 中国有色金属学报, 2022, 32(8): 2446−2457.

    WANG B W, GAN S, DONG P B, et al. Experimental study on consolidation characteristics of tailings cemented backfill in alpine region[J]. The Chinses Journal of Nonferrous Metals, 2022, 32(8): 2446−2457.

    [33]

    徐文彬, 万昌兵, 田喜春. 温度裂隙对充填体强度耦合效应及裂纹扩展模式[J]. 采矿与安全工程学报, 2018, 35(3): 612−619.

    XU W B, WAN C B, TIAN X C. Coupling effect of temperature crack on strength of filling body and crack propagation mode[J]. Journal of Mining and Safety Engineering, 2018, 35(3): 612−619.

    [34]

    郑迪, 薛改利, 宋卫东. 基于不同养护龄期的充填体强度多元线性回归分析[J]. 矿业研究与开发, 2018, 38(6): 21−24.

    ZHENG D, XUE G L, SONG W D. Multivariate linear regression analysis of backfill strength based on different curing ages[J]. Mining Research and Development, 2018, 38(6): 21−24.

    [35]

    王永岩, 黄飒, 于卓群, 等. 考虑龄期的全尾砂胶结充填体强度预测模型建立及试验验证[J]. 煤炭技术, 2021, 40(8): 1−3.

    WANG Y Y, HUANG S, YU Z Q, et al. Establishment and experimental verification of strength prediction model of cemented backfill with full tailings considering age[J]. Coal Technology, 2021, 40(8): 1−3.

    [36]

    张福学, 康志强, 辛东夫. 某铁矿胶结充填体特性试验及配比研究[J]. 矿业研究与开发, 2020, 40(2): 38−41.

    ZHANG F X, KANG Z Q, XIN D F. Experimental study on characteristics and proportioning of cemented backfill in an iron mine[J]. Mining Research and Development, 2020, 40(2): 38−41.

    [37]

    卢宏建, 王奕仁, 张友志, 等. 考虑接触面倾角的充填体−围岩组合体能量特征分析[J]. 金属矿山, 2022(8): 9−19.

    LU H J, WANG Y Y, ZHANG Y Z, et al. Analysis of energy characteristics of backfill−surrounding rock combination considering contact angle[J]. Metal Mine, 2022(8): 9−19.

    [38]

    LU H J, WANG Y R, GAN D Q, et al. Numerical investigation of the mechanical behavior of the backfill-rock composite structure under triaxial compression[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(5): 802−812.

    [39]

    WANG Y R, LU H J, WU J. Experimental investigation on strength and failure characteristics of cemented paste backfill-rock composite under uniaxial compression[J]. Construction and Building Materials, 2021, 304: 1−14.

    [40]

    王明旭. 胶结充填体与围岩复合体的力学特性[J]. 煤炭学报, 2019, 44(2): 445−453.

    WANG M X. Mechanical properties of cemented backfill and surrounding rock complex[J]. Journal of Coal, 2019, 44(2): 445−453.

    [41]

    杨建桥. 某矿自立胶结充填体的稳定性研究[D]. 昆明: 昆明理工大学, 2012.

    YANG J Q. Study on stability of self−supporting cemented backfill in a mine[D]. Kunming: Kunming University of Science and Technology, 2012.

    [42]

    蔡嗣经. 矿山充填力学基础[M]. 北京: 冶金工业出版社, 2009.

    CAI S J. Fundamentals of mine filling mechanics[M]. Beijing: Metallurgical Industry Press, 2009.

    [43]

    陈玉宾, 乔登攀, 孙宏生, 等. 上向水平分层充填体的强度模型及应用[J]. 金属矿山, 2014(10): 27−31.

    CHEN Y B, QIAO D P, SUN H S, et al. Strength model of upward horizontal layered backfill and its application[J]. Metal Mine, 2014(10): 27−31.

    [44]

    卢平. 确定胶结充填体强度的理论与实践[J]. 黄金, 1992(3): 14−19.

    LU P. Theory and practice of determining the strength of cemented backfill[J]. Gold, 1992(3): 14−19.

    [45]

    卢宏建, 武晓军, 蔡晓盛, 等. 胶结充填体—围岩组合体剪切强度与破坏特征[J]. 金属矿山, 2023(5): 97−103.

    LU H J, WU X J, CAI X S, et al. Shear strength and failure characteristics of cemented backfill−surrounding rock combination[J]. Metal Mine, 2023(5): 97−103.

    [46]

    李电辉, 孙德胜. 三鑫矿业公司充填体强度与采矿方法匹配研究[J]. 黄金, 2013, 34(6): 39−42.

    LI D H, SUN D S. Study on matching between filling body strength and mining method in SanxCLmpany[J]. Gold, 2013, 34(6): 39−42.

    [47]

    ABTIN J, MICHEL A, LI L. Three−dimensional stress state in inclined backfilled stopes obtained from numerical simulations and new closed−from solution[J]. Canadian Geotechnical Journal, 2018, 55(6): 810−828. doi: 10.1139/cgj-2016-0385

    [48]

    卢宏建, 王奕仁, 武婕, 等. 充填体−围岩组合体力学特性及破裂演化特征RFPA3D模拟[J]. 金属矿山, 2022(6): 1−8.

    LU H J, WANG Y R, WU J, et al. Mechanical characteristics and fracture evolution characteristics of backfill−surrounding rock combination RFPA3D simulation[J]. Metal Mine, 2022(6): 1−8.

    [49]

    付玉华, 占飞, 余信橙. 高阶段采场充填体稳定性的数值分析[J]. 中国矿业, 2017, 26(7): 111−115.

    FU Y H, ZHAN F, YU X C. Numerical analysis of stability of filling body in high−stage stope[J]. China Mining, 2017, 26(7): 111−115.

    [50]

    WANG R F, ZENG F T, LI L. Stability analyses of side-exposed backfill considering mine depth and extraction of adjacent stope[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142.

    [51]

    卢宏建, 武晓军, 武婕. 考虑接触面特性与采充时序的胶结充填体稳定性评价[J]. 金属矿山, 2023(4): 1−7.

    LU H J, WU X J, WU J. Stability evaluation of cemented backfill considering contact surface characteristics and mining and filling sequence[J]. Metal Mine, 2023(4): 1−7.

    [52]

    QI C, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives[J]. Minerals Engineering, 2019, 144: 106025. doi: 10.1016/j.mineng.2019.106025

    [53]

    秦原, 张斌斌, 谢刚. SVM模型预测充填体强度[J]. 江西建材, 2020(7): 10−12+14.

    QIN Y, ZHANG B B, XIE G. Prediction of backfill strength by SVM model[J]. Jiangxi Building Materials, 2020(7): 10−12+14.

    [54]

    LIU J D, LI G C, YANG S, et al. Prediction models for evaluating the strength of cemented paste backfill: a comparative study[J]. Minerals, 2020, 10(11).

    [55]

    王志军, 吕文生, 杨鹏, 等. 充填体强度的支持向量机设计匹配模型[J]. 金属矿山, 2016(11): 34−38.

    WANG Z J, LV W S, YANG P, et al. Support vector machine design matching model of filling body strength[J]. Metal Mine, 2016(11): 34−38.

    [56]

    董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032−1036.

    DONG Y, YANG Z Q, GAO Q. Prediction of the strength of backfill by orthogonal test combined with BP neural network model[J]. Materials Reports, 2018, 32(6): 1032−1036.

    [57]

    LI E, ZHOU J, SHI X Z, et al. Developing a hybrid model of salp swarm algorithm−based support vector machine to predict the strength of fiber−reinforced cemented paste backfill[J]. Engineering with Computers: 1 −22[2021 −02 − 02].

    [58]

    白春红. 基于SVM模型的充填体强度与采场稳定性需求智能匹配研究[J]. 中国矿业, 2019, 28(11): 104−108.

    BAI C H. Research on intelligent matching of backfill strength and stope stability demand based on SVM model[J]. China Mining Magazine, 2019, 28(11): 104−108.

    [59]

    周士霖. 深部开采充填体稳定性及与岩体智能匹配研究[D]. 长沙: 中南大学, 2012.

    ZHOU S L. Study on stability of deep mining backfill and its intelligent matching with rock mass[D]. Changsha: Central South University, 2012.

    [60]

    王志会, 吴爱祥, 王洪江. 基于PSO−BPNN的充填体围岩界面抗剪强度预测[J]. 矿业研究与开发, 2020, 40(3): 130−134.

    WANG Z H, WU A X, WANG H J. Prediction of shear strength of surrounding rock interface of backfill based on PSO−BPNN[J]. Mining Research and Development, 2020, 40(3): 130−134.

    [61]

    ZHANG B, LI K Q, ZHANG S Q, et al. Strength prediction and application of cemented paste backfill based on machine learning and strength correction[J]. Heliyon, 2022, 8(8): e10338−e10338. doi: 10.1016/j.heliyon.2022.e10338

    [62]

    MITCHELL R J, OLSEN R S, SMITH J D. Model studies on cemented tailings used in mine backfill[J]. Canadian Geotechnical Journal, 2011, 19(1).

    [63]

    LI L. Generalized solution for mining backfill design[J]. International Journal of Geomechanics, 2014, 14(3).

    [64]

    LIU Z X, LAN M, XIAO S Y, et al. Damage failure of cemented backfill and its reasonable match with rock mass[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3).

    [65]

    YANG P, LI L, AUBERTIN M. A new solution to assess the required strength of mine backfill with a vertical exposure[J]. International Journal of Geomechanics, 2017, 17(10).

    [66]

    ZHAO X, FOURIE A, QI C C. An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(10): 1206−16. doi: 10.1007/s12613-019-1885-7

    [67]

    张常光, 蔡明明, 祁航, 等. 考虑充填顺序与后壁黏结力的采场充填计算统一解[J]. 岩石力学与工程学报, 2019, 38(2): 226−36.

    ZHANG C G, CAI M M, QI H, et al. Unified solution of stope filling calculation considering filling sequence and cohesive force of back wall[J]. Journal of Rock Mechanics and Engineering, 2019, 38(2): 226−36.

    [68]

    王俊, 乔登攀, 韩润生, 等. 阶段空场嗣后充填胶结体强度模型及应用[J]. 岩土力学, 2019, 40(3): 1105−12.

    WANG J, QIAO D P, HAN R S, et al. Strength model of cemented body after filling in stage open stope and its application[J]. Rock and Soil Mechanics, 2019, 40(3): 1105−12.

    [69]

    杨磊, 邱景平, 孙晓刚, 等. 阶段嗣后胶结充填体矿柱强度模型研究与应用[J]. 中南大学学报(自然科学版), 2018, 49(9): 2316−22.

    YANG L, QIU J P, SUN X G, et al. Study and application of pillar strength model of cemented backfill after stage[J]. Journal of Central South University (Natural Science Edition), 2018, 49(9): 2316−22.

    [70]

    刘光生, 杨小聪, 郭利杰. 阶段空场嗣后充填体三维拱应力及强度需求模型[J]. 煤炭学报, 2019, 44(5): 1391−403.

    LIU G S, YANG X C, GUO L J. Three−dimensional arch stress and strength demand model of filling body after stage open stope[J]. Journal of Coal, 2019, 44(5): 1391−403.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1504
  • PDF下载数:  350
  • 施引文献:  0
出版历程
收稿日期:  2024-03-12
刊出日期:  2024-04-15

目录