Experimental Study on Rheological Properties of Coal Gangue Slurry Based on Response Surface Method
-
摘要:
为了使煤矸石料浆满足管道输送的工艺要求,需研究其流动性。采用榆林袁大滩矿煤矸石制备成不同质量分数料浆开展流变特性实验,利用Box−Behnken Design设计试验并用响应面法分析煤矸石固料质量分数、颗粒级配和静置时间三个因素对煤矸石充填料浆流变特性指标的影响。实验分析得到的最优煤矸石浆体配合比为:固料质量分数72%,颗粒级配为4.75~1.18 mm粒级占30%,1.18 ~0.425 mm粒级占40%,0.425~0.075 mm粒级占10%,小于0.075 mm粒级占20%。该料浆的屈服剪切应力范围为103.02 ~131.645 Pa,塑性黏度的范围为0.54 ~0.64 Pa·s,且此配合比随着静置时间的增加固料沉降量增加较小,是较为合理的煤矸石浆体料浆配比。
Abstract:To ensure the gangue slurry met the process requirements for pipeline transportation, its fluidity had been studied. Coal gangue from the Yulin Yuandatan mine had been prepared into slurries with different mass fractions for conducting rheological characteristic experiments. The Box−Behnken Design test and response surface method had been utilized to analyze the influence of three factors: the gangue solid mass fraction, particle gradation, and resting time on the rheological characteristics of the gangue filling slurry.The optimal gangue slurry ratio that had been derived from the experimental analysis was as follows: a 72% mass fraction of solids, with the particle gradation consisting of 30% in the range of 4.75~1.18 mm, 40% in the range of 1.18~0.425 mm, 10% in the range of 0.425~0.075 mm, and 20% less than 0.075 mm. The yield shear stress of the slurry had ranged from 103.02 to 131.645 Pa, and the plastic viscosity had ranged from 0.54 to 0.64 Pa·s. It had been observed that with the increase in the static time of the solid material settlement, the increase in this ratio was minimal.
-
-
表 1 固料级配方案
Table 1. Aggregate grading scheme
方案粒径 粒级1 粒级2 粒级3 粒级4 级配1 40% 30% 20% 10% 级配2 35% 35% 15% 15% 级配3 30% 40% 10% 20% 级配4 25% 25% 25% 25% 表 2 粒径级配特征指标
Table 2. Characteristic indices of particle size grading
编号 d10 /μm d60/μm d60/μm d90/μm 中值粒径d50/μm 不均匀系数 Cu 曲率系数 Cc 级配1 35 340 1200 3350 835 34.3 2.75 级配2 15 300 1050 3190 750 70.0 5.71 级配3 85 270 960 3000 680 11.3 0.89 级配4 55 80 625 2750 380 11.4 0.19 表 3 质量分数60%、65%下的充填料浆流变参数
Table 3. Rheological parameters of filling paste at 60% mass fraction
静置时间/min 流变指标 质量分数60% 质量分数65% 级配1 级配2 级配3 级配4 级配1 级配2 级配3 级配4 0 μ/(Pa·s) 0.072 0.081 0.071 0.051 0.145 0.149 0.213 0.147 τ0/Pa 1.777 3.512 5.245 5.74 12.211 5.832 11.593 22.36 n 1 1 1 1 1 1 1 1 R2 0.963 0.952 0.943 0.88 0.851 0.987 0.95 0.949 20 μ/(Pa·s) 0.042 0.384 0.054 0.058 0.11 0.945 0.156 0.111 τ0/Pa 6.691 8.412 9.064 12.151 15.739 10.143 25.161 18.904 n 1 0.503 1 1 1 0.527 1 1 R2 0.731 0.875 0.928 0.97 0.68 0.949 0.947 0.984 40 μ/(Pa·s) 0.889 0.537 0.426 0.065 0.126 0.623 0.159 0.101 τ0/Pa 0.559 7.294 14.589 9.978 18.314 16.35 32.724 20.899 n 0.48 0.495 0.607 1 1 0.546 1 1 R2 0.926 0.884 0.944 0.989 0.998 0.899 0.942 0.99 60 μ/(Pa·s) 1.441 0.351 0.263 0.1 0.898 1.484 1.643 0.626 τ0/Pa 1.682 6.393 11.625 9.044 20.394 10.804 20.666 17.029 n 0.33 0.586 0.697 1 0.671 0.402 0.474 1 R2 0.793 0.864 0.975 0.985 0.922 0.961 0.968 0.989 表 4 质量分数70%、75%下的充填料浆流变参数
Table 4. Rheological parameters of filling paste at 60% mass fraction
静置时间/min 流变指标 质量分数70% 质量分数75% 级配1 级配2 级配3 级配4 级配1 级配2 级配3 级配4 0 μ/(Pa·s) 0.472 0.284 0.365 0.782 0.675 0.886 1.043 1.921 τ0/Pa 32.247 26.501 38.863 79.573 129.522 213.562 237.217 283.754 n 1 1 1 1 1 1 1 1 R2 0.964 0.974 0.975 0.964 0.903 0.939 0.971 0.982 20 μ/(Pa·s) 0.913 0.302 0.375 0.527 0.43 1.094 1.076 1.373 τ0/Pa 52.86 30.291 46.485 109.115 185.069 150.322 238.222 414.154 n 0.83 1 1 1 1 1 1 1 R2 0.891 0.972 0.98 0.959 0.788 0.97 0.969 0.966 40 μ/(Pa·s) 0.454 0.293 0.342 0.576 0.462 0.705 0.912 1.454 τ0/Pa 49.493 35.415 55.089 110.05 120.564 216.489 256.454 442.57 n 1 1 1 1 1 1 1 1 R2 0.93 0.967 0.964 0.965 0.862 0.93 0.952 0.96 60 μ/(Pa·s) 0.401 0.231 0.317 0.342 0.434 0.822 0.85 1.6 τ0/Pa 48.603 45.839 50.116 130.457 114.887 156.438 252.082 442.887 n 1 1 1 1 1 1 1 1 R2 0.925 0.958 0.981 0.93 0.835 0.944 0.944 0.949 表 5 响应面实验的因素和水平
Table 5. Factors and levels of response surface test
影响因素 因素 水平 −1 0 1 质量分数/% A 65 70 75 级配方案 B 2 3 4 静置时间/min C 0 20 40 表 6 实验方案及结果
Table 6. Test scheme and results
编号 质量分数/%-A 级配方案-B 静置时间/min-C 屈服剪切应力/Pa-D 塑性黏度/Pa·s-E 1 70 3 20 46.485 0.375 2 65 3 40 32.724 0.159 3 70 4 0 79.573 0.782 4 75 3 0 237.217 1.043 5 65 2 20 10.143 0.945 6 70 3 20 46.485 0.375 7 70 3 20 46.485 0.375 8 75 4 20 414.154 1.373 9 70 2 40 35.415 0.293 10 75 3 40 256.454 0.912 11 65 3 0 11.593 0.213 12 75 2 20 150.322 1.094 13 65 4 20 18.904 0.111 14 70 2 0 26.501 0.284 15 70 3 20 46.485 0.375 16 70 3 20 46.485 0.375 17 70 4 40 110.05 0.576 表 7 多种模型方差分析比较
Table 7. Variance analysis and comparison of multiple models
方差来源 平方和 自由度 均方 F值 概率>F 平均值 1.535E+005 1 1.535E+005 / / 线性模型 1.420E+005 3 47349.96 11.51 0.0006 2FI 16382.44 3 5460.81 1.47 0.2805 二次方 33532.14 3 11177.38 22.04 0.0006(建议采用) 三次方 3550.23 3 1183.41 6.366E+007 < 0.0001(失真) 残差 0.000 4 0.000 / / 总计 3.490E+005 17 20531.17 / / 表 8 R2综合分析
Table 8. R2 comprehensive analysis
类型 标准偏差 R2 R2校正值 R2预测值 预测残差平方和 线性模型 64.13 0.7265 0.6634 0.4857 1.006E+005 2FI 60.90 0.8103 0.6965 0.2671 1.433E+005 二次方程 22.52 0.9818 0.9585 0.7095 56803.63(建议采用) 三次方程 0.000 1.0000 1.0000 / /(失真) 表 9 响应面分析拟合回归方程的方差分析结果
Table 9. Variance analysis results of response surface analysis and fitting regression equation
方差来源 平方和 自由度 均方 F值 Pro>F 模型 1.918E+005 7 27406.76 67.26 < 0.0001(显著) A−质量分数 1.212E+005 1 1.212E+005 297.49 < 0.0001 B−级配方案 20030.01 1 20030.01 49.16 < 0.0001 C−静置时间 795.19 1 795.19 1.95 0.1959 AB 16265.30 1 16265.30 39.92 0.0001 A2 31689.50 1 31689.50 77.77 < 0.0001 B2 965.36 1 965.36 2.37 0.1581 C2 6.66 1 6.66 0.016 0.9011 残差 3667.36 9 407.48 失拟 3667.36 5 733.47 总差 0.000 4 0.000 表 10 多种模型方差分析比较
Table 10. Variance analysis and comparison of multiple models
方差来源 平方和 自由度 均方 F值 Pro>F 平均值 5.49 1 5.49 线性模型 1.15 3 0.38 4.29 0.0260(建议采用) 2FI 0.32 3 0.11 1.29 0.3305 二次方 0.61 3 0.20 6.24 0.0217(建议采用) 三次方 0.23 3 0.076 6.366E+007 < 0.0001(失真) 残差 0.000 4 0.000 总计 7.79 17 0.46 表 11 R2综合分析
Table 11. R2 comprehensive analysis
类型 标准偏差 R2 R2校正值 R2预测值 预测残差
平方和线性模型 0.30 0.4976 0.3817 0.0266 2.24(建议采用) 2FI 0.29 0.6378 0.4205 −0.5355 3.53 二次方程 0.18 0.9014 0.7747 −0.5770 3.63(建议采用) 三次方程 0.000 1.0000 1.0000 +(失真) 表 12 响应面分析拟合回归方程的方差分析结果
Table 12. Variance analysis results of response surface analysis and fitting regression equation
方差来源 平方和 自由度 均方 F值 Pro>F 模型 2.06 7 0.29 11.05 0.0009(显著) A−质量分数 1.12 1 1.12 42.04 0.0001 B−级配方案 6.385E−003 1 6.385E−003 0.24 0.6362 C−静置时间 0.018 1 0.018 0.68 0.4295 AB 0.31 1 0.31 11.62 0.0078 A2 0.38 1 0.38 14.40 0.0043 B2 0.18 1 0.18 6.57 0.0306 C2 0.038 1 0.038 1.43 0.2624 残差 0.24 9 0.027 失拟 0.24 5 0.048 总差 0.000 4 0.000 表 13 响应面优化方案
Table 13. Response surface optimization scheme
优化
方案质量
分数/%级配
方案静置
时间/min屈服剪切
应力/Pa塑性黏
度/(Pa·s)期望度 1 72 3 2 112.267 0.572457 1 2 72 3 8 123.303 0.628136 1 3 72 3 9 110.728 0.589706 1 4 72 3 10 109.074 0.58614 1 5 72 3 11 108.335 0.58484 1 6 72 3 14 126.091 0.640945 1 7 72 3 22 106.888 0.553354 1 8 72 3 22 103.02 0.541263 1 9 72 3 29 123.19 0.561565 1 10 72 3 30 131.645 0.578399 1 11 73 3 0 130.234 0.62256 1 12 73 3 0 124.139 0.602834 1 13 73 3 8 152.45 0.723976 1 14 73 3 15 133.681 0.66367 1 15 73 3 19 152.298 0.713418 1 16 73 3 22 134.114 0.640826 1 17 73 3 24 163.888 0.726975 1 18 73 3 28 163.626 0.697976 1 19 73 3 30 171.065 0.704286 1 20 73 3 30 161.381 0.678723 1 21 73 3 35 166.335 0.637975 1 22 73 3 36 141.755 0.553152 1 23 73 3 37 176.693 0.645834 1 24 74 3 3 194.509 0.846104 1 25 74 3 8 196.798 0.867696 1 26 74 3 9 177.335 0.805938 1 27 74 3 13 197.427 0.873265 1 28 74 3 15 180.814 0.816856 1 29 74 3 16 196.841 0.868063 1 30 74 3 17 178.438 0.80547 1 31 74 3 22 181.045 0.796917 1 32 74 3 27 179.541 0.762521 1 33 74 3 34 198.427 0.758976 1 -
[1] 朱磊, 古文哲, 宋天奇, 等. 采空区煤矸石浆体充填技术研究进展与展望[J/OL]. 煤炭科学技术, [2022−12−05]. DOI:10.13199/j.cnki.cst.2022−1725.
ZHU L, GU W Z, SONG T Q, et al. Research progress and prospect of coal gangue slurry filling technology in goaf[J/OL]. Coal Science and Technology, [2022−12−05]. DOI: 10.13199/j.cnki.cst.2022−1725.
[2] 张钦礼, 谢盛青, 郑晶晶, 等. 充填料浆沉降规律研究及输送可行性分析[J]. 重庆大学学报, 2011, 34(1): 105−109+133.
ZHANG Q L, XIE S Q, ZHENG J J, et al. Sedimentation law research and transportation feasibility study of backfilling slurry[J]. Journal of Chongqing University, 2011, 34(1): 105−109+133.
[3] 杨加强. 煤矸石球磨注浆材料流变性能试验研究[J]. 中国煤炭地质, 2022, 34(S2): 39−43.
YANG J Q. Experimental study on rheological properties of coal gangue ball milling grouting material[J]. Coal Geology of China, 2022.34(S2): 39−43.
[4] SUN K H, WU X. Experimental study on rheological properties of coal gangue slurry based on response surface METHODOLOGY[J]. Processes, 2023, 11, 1205. https://doi.org/10.3390/pr11041205.
[5] 周瑶, 谢志清, 刘长友, 等. 不同粒径煤矸石浆液的流变性能试验[J/OL]. 硅酸盐通报, 2022, 41(12): 4324−4331.
ZHOU Y, XIE Z Q, LIU C Y, et al. Rheological properties test of coal gangue slurry with different particle sizes[J/OL]. Bulletin of The Chinese Ceramic Society, 2022, 41(12): 4324−4331.
[6] 朱磊, 宋天奇, 古文哲, 等. 矸石浆体输送阻力特性及采空区流动规律试验研究[J]. 煤炭学报, 2022, 47(S1): 39−48.
ZHU L, SONG T Q, GU W Z, et al. Experimental research on transport−resistance characteristics of gangue slurry and its flow trend in goaf[J]. Journal of China Coal Society, 2022, 47(S1): 39−48.
[7] 朱磊, 宋天奇, 古文哲. 煤基固废浆体管道充填技术研究与应用[J]. 煤炭技术, 2021, 40(10): 47−51.
ZHU L, SONG T Q, GU W Z. Research and application on pipeline backfill technology of slurry comprsing coal−based solid waste[J]. Coal Technology, 2021, 40(10): 47−51.
[8] WU B Q, WANG X D, LIU X X, et al. Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes[J]. Engineering Failure Analysis, 2022, 134. https://doi.org/10.1016/j.engfailanal.2022.106081
[9] 黄玉诚, 段晓博, 王瑜敏, 等. 煤矸石胶结充填管路输送不满管流及其防治方法研究[J]. 煤炭科学技术, 2020, 48(9): 117−122.
HUANG Y C, DUAN X B, WANG Y M, et al. Research on non−full pipeline flow transportation and prevention method of coal gangue cemented backfill[J]. Coal Science and Technology, 2020, 48(9): 117−122.
[10] 古文哲, 朱磊, 刘治成, 等. 煤矿固体废弃物流态化浆体充填技术[J]. 煤炭科学技术, 2021, 49(3): 83−91.
GU W Z, ZHU L, LIU Z C, et al. Fluidization slurry backfilling technology of coal mine solid waste[J]. Coal Science and Technology, 2021, 49(3): 83−91.
[11] 朱磊, 潘浩, 古文哲, 等. 垮落带矸石浆体充填模拟试验研究[J]. 煤炭学报, 2021, 46(S2): 629−638.
ZHU L, PAN H, GU W Z, et al. Experimental study on flow and diffusion law of gangue filling slurryin caving zone[J]. Journal of China Coal Society, 2021, 46(S2): 629−638.
[12] 李亮, 黄庆享, 吴杰, 等. 煤矸石井下处理与冒落区流态化充填技术[J]. 西安科技大学学报, 2022, 42(5): 865−873.
LI L, HUANG Q X, WU J, et al. Underground treatment of coal gangue and fluidization filling technology in caving area[J]. Journal of Xi'an University of Science and Technology, 2022, 42(5): 865−873.
[13] XUAN D Y, XU J L, ZHU W B. Backfill mining practice in China coal mines[J]. Journal of Mines Metals and Fuels, 2013, 61(7): 225−234.
[14] ZHANG X G, ZHAO J H, XIN L, et al. Monitoring and assessment of cemented paste backfill containing coal gangue and fly ash in an underground mine[J]. Advances in Materials Science and Engineering, 2021, 2021. DOI: 10.1155/2021/5946148.
[15] 温震江, 高谦, 王永定, 等. 不同浓度料浆流变特性与混合骨料级配相关性试验[J]. 东北大学学报(自然科学版), 2020, 41(5): 642−648.
WEN Z J, GAO Q, WANG Y D, et al. Experiment on correlation between rheological properties of filling slurry with different mass concentration and mixed aggregate gradation[J]. Journal of Northeastern University(Natural Science), 2020, 41(5): 642−648.
[16] 杨捷, 武继龙, 晋俊宇. 矸石、粉煤灰高浓度料浆矸石颗粒悬浮性研究[J]. 矿业科学学报, 2019, 4(2): 127−132.
YANG J, WU J L, JIN J Y. Study on the suspended properties of gangue particles with high concentration of gangue and fly ash[J]. Journal of Mining Science and Technology, 2019, 4(2): 127−132.
[17] 林倚天, 苏士杰, 赵明, 等. 煤矸石−粉煤灰充填料浆流变特性的实验研究[J]. 中国煤炭地质, 2021, 33(9): 13−17+41.
LIN Y T, SU S J, ZHAO M, et al. Experimental study on coal gangue−flyash filling material slurry rheologic features[J]. Coal Geology of China, 2021, 33(9): 13−17+41.
[18] 胡文静, 刘音, 刘国明, 等. 混合骨料级配对不同浓度充填膏体流变性能影响试验研究[J]. 矿业研究与开发, 2021, 41(5): 34−38.
HU W J, LIU Y, LIU G M, et al. Experimental study on the effect of mixed aggregate gradation on rheological properties of filling paste with different concentrations[J]. Mining Research and Development, 2021, 41(5): 34−38.
[19] 王倩. 管道输送用煤矸石浆体特性参数研究与探讨[J]. 煤炭技术, 2021, 40(5): 183−185.
WANG Q. Study and discussion on characteristic parameters of coal gangue slurry for pipeline transportation[J]. Coal Technology, 2021, 40(5): 183−185.
[20] 徐文彬, 杨宝贵, 杨胜利, 等. 矸石充填料浆流变特性与颗粒级配相关性试验研究[J]. 中南大学学报(自然科学版), 2016, 47(4): 1282−1289.
XU W B, YANG B G, YANG S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry[J]. Journal of Central South University(Science and Technology), 2016, 47(4): 1282−1289.
[21] 曹士凯, 王世博, 赵金田. 基于流变特性分析的膏体充填尾砂级配优化研究[J]. 矿业研究与开发, 2020, 40(10): 98−101.
CAO S K, WANG S B, ZHAO J T. Optimization of paste filling tailings grading based on rheological analysis[J]. Mining Research and Development, 2020, 40(10): 98−101.
[22] 孙南翔, 徐志强, 曲思建, 等. 颗粒分布对高浓度水煤浆流变性能的影响[J]. 煤炭工程, 2015, 47(3): 122−125.
SUN N X, XU Z Q, QU S J, et al. Effect of particle size distribution on rheology behavior of high−concentration coal water slurry[J]. Coal Engineering, 2015, 47(3): 122−125.
-