磷矿中磷灰石及脉石矿物浮选表面化学研究进展

张覃, 卯松, 黄小芬, 陈傲傲, 张文彬. 磷矿中磷灰石及脉石矿物浮选表面化学研究进展[J]. 矿产保护与利用, 2024, 44(3): 1-15. doi: 10.13779/j.cnki.issn1001-0076.2024.03.001
引用本文: 张覃, 卯松, 黄小芬, 陈傲傲, 张文彬. 磷矿中磷灰石及脉石矿物浮选表面化学研究进展[J]. 矿产保护与利用, 2024, 44(3): 1-15. doi: 10.13779/j.cnki.issn1001-0076.2024.03.001
ZHANG Qin, MAO Song, HUANG Xiaofen, CHEN Aoao, ZHANG Wenbin. Research Progress in Surface Chemistry of Flotation for Apatite and Gangue Minerals in Phosphate Ore[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 1-15. doi: 10.13779/j.cnki.issn1001-0076.2024.03.001
Citation: ZHANG Qin, MAO Song, HUANG Xiaofen, CHEN Aoao, ZHANG Wenbin. Research Progress in Surface Chemistry of Flotation for Apatite and Gangue Minerals in Phosphate Ore[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 1-15. doi: 10.13779/j.cnki.issn1001-0076.2024.03.001

磷矿中磷灰石及脉石矿物浮选表面化学研究进展

  • 基金项目: 国家自然科学基金项目(52164018)
详细信息
    作者简介: 张覃,博士,教授,博士生导师,主要从事难选矿石的选矿及资源综合利用领域的教学与科研工作; 张文彬,昆明理工大学教授、博士生导师,原昆明理工大学校长。长期从事铜矿及其他有色金属矿物加工领域的教学与科研工作。20世纪80年代中期,赴加拿大UBC作访问学者,回国后首次在昆明理工大学开展浮选表面化学研究工作。承担国家重大科技攻关项目、国家自然科学基金项目和省部级项目等40余项。在国内外刊物及学术会议上发表论文70余篇,出版专著和译著3部。获国家技术发明二等奖1项、省部级科技进步奖5项、国际发明展览会金奖1项、中国专利十五年成就展最佳项目奖1项;获中共中央、国务院、中央军委颁发的“庆祝中华人民共和国成立70周年”纪念章;享受国务院政府特殊津贴专家,获云南省教育功勋奖及昆明市十大创新人物等荣誉。除本科教学外,培养硕士博士生数十人,为我国矿业领域培养了大批优秀人才
    通讯作者: 张文彬,教授,博士生导师,主要从事铜矿及其他有色金属矿物加工领域的教学与科研工作。
  • 中图分类号: TD91;TD971+.3

Research Progress in Surface Chemistry of Flotation for Apatite and Gangue Minerals in Phosphate Ore

More Information
    Corresponding author: ZHANG Wenbin
  • 磷矿是战略性关键矿产资源。中国磷矿储量位居世界第二位,主要类型为沉积型磷块岩。由于磷块岩是由外生作用形成、由隐晶质或显微隐晶质磷灰石及其它脉石矿物组成的堆积体,并且磷灰石与脉石矿物的表面润湿性、表面电性、表面吸附等表面性质相近,使得浮选分离难度大。浮选表面化学是磷矿浮选的重要理论基础,是实现不同矿物之间选择性分离的关键。综述了磷矿石中主要有用矿物磷灰石和主要脉石矿物白云石、石英的晶体化学特征,以及磷灰石与脉石矿物表面润湿性、表面电性、表面吸附等表面性质。讨论了不同浮选药剂作用下矿物表面润湿性的变化特征、矿物在水溶液中的双电层结构、矿物表面的活性位点与捕收剂作用的吸附构型。在此基础上,总结了难免离子对磷灰石与脉石矿物浮选行为的影响,为中低品位磷矿石的浮选分离提供理论支撑。

  • 加载中
  • 图 1  矿物晶体结构模型(a—氟磷灰石;b—白云石;c—石英)[31]

    Figure 1. 

    图 2  颗粒表面水化膜示意图(1—固体颗粒;2—水化膜;3—体相水)[51]

    Figure 2. 

    图 3  磷灰石在水溶液的双电层结构示意图[61]

    Figure 3. 

    图 4  白云石在水溶液的双电层结构示意图[61]

    Figure 4. 

    图 5  石英在水溶液中的双电层结构示意图[59]

    Figure 5. 

    图 6  氟磷灰石表面捕收剂吸附构型[72]

    Figure 6. 

    图 7  白云石表面捕收剂不同吸附构型[72]

    Figure 7. 

    图 8  抑制剂在磷灰石和白云石表面选择性吸附模型[57]

    Figure 8. 

    图 9  金属离子对磷矿浮选的影响(a—Ca2+降低白云石可浮性的作用机理[93];b—Ca2+、Mg2+和捕收剂在白云石表面的吸附构型[94]

    Figure 9. 

    图 10  阴离子对磷矿浮选的影响(a—SO42−和H2PO4在磷灰石/白云石表面吸附构型[79];b—F降低白云石可浮性的作用机理[100]

    Figure 10. 

  • [1]

    何桂旭, 张覃. 氨基三亚甲基膦酸对氟磷灰石和白云石选择性抑制机理研究[J]. 化工矿物与加工, 2023, 52(11): 12−17.

    HE G X, ZHANG Q. Study on mechanism of selective inhibition of fluorapatite and dolomite by amino trimethylene phosphonic acid[J]. Industrial Minerals & Processing, 2023, 52(11): 12−17.

    [2]

    李兵, 刘作华, 陶长元. 湿法磷酸绿色制造[M]. 重庆: 重庆大学出版社, 2019.

    LI B, LIU Z H, TAO C Y. Green manufacturing of wet−process phospphoric acid[M]. Chongqing: Chongqing University Press, 2019.

    [3]

    LAN S Z, SHEN P L, ZHENG Q F, et al. Effective flotation separation of apatite from dolomite using a new eco−friendly depressant gallic acid[J]. Green Chemistry, 2024, 26(3): 1627−1636. doi: 10.1039/D3GC03325B

    [4]

    韩豫川. 中国磷矿床[M]. 北京: 地质出版社, 2012.

    HAN Y C. Phosphate deposits of China[M]. Beijing: Geology Press, 2012.

    [5]

    ABOUZEID A Z M, NEGM A T, ELGILLANI D A. Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics[J]. International Journal of Mineral Processing, 2009, 90(1): 81−89.

    [6]

    孙传尧. 选矿工程师手册(第4册)下卷: 选矿工业实践[M]. 北京: 冶金工业出版社, 2015.

    SUN C Y. Handbook for mineral processing engineers (Volume 4) Ⅱ: Mineral processing industrial practices[M]. Beijing: Metallurgical Industry Press, 2015.

    [7]

    郑其, 张文彬. 用焙烧消化工艺处理碳酸盐磷矿[J]. 矿产综合利用, 1998(3): 5−9.

    ZHENG Q, ZHANG W B. The treatment of carbonate phosphate ores by roasting−slaking process[J]. Multipurpose Utilization of Mineral Resources, 1998(3): 5−9.

    [8]

    胡为柏. 浮选[M]. 北京: 冶金工业出版社, 1983.

    HU W B. Flotation[M]. Beijing: Metallurgical Industry Press, 1983.

    [9]

    赖亚, 何伯泉. 泡沫浮选表面化学[M]. 北京: 冶金工业出版社, 1987.

    LAI Y, HE B Q. Surface chemistry of froth flotation[M]. Beijing: Metallurgical Industry Press, 1987.

    [10]

    FUERSTENAU D W, 魏明安, 李长根. 浮选百年[J]. 国外金属矿选矿, 2001, 38(3): 2−9.

    FUERSTENAU D W, WEI M A, LI C G. A century of flotation[J]. Metallic Ore Dressing Abroad, 2001, 38(3): 2−9.

    [11]

    系志编写组. 昆明理工大学资源开发工程系志[M]. 昆明: 昆明理工大学, 1999.

    COMPILING T. Department of resource development engineering, Kunming University of Science and Technology[M]. Kunming: Kunming University of Science and Technology, 1999.

    [12]

    张文彬. 氧化铜矿浮选研究与实践[M]. 长沙: 中南工业大学出版社, 1992.

    ZHANG W B. Research and practice on flotation of oxidized copper ores[M]. Changsha: Central South University of Technology Press, 1992.

    [13]

    张覃, 张文彬. 硫酸铵在孔雀石的黄药直接浮选中的相转移催化机理研究[J]. 昆明理工大学学报(理工版), 1997, 22(3): 15−18.

    ZHANG Q, ZHANG W B. Study on the phase transfer catalysis mechanism of ammonium sulfate in the direct flotation of pyrite in chalcopyrite[J]. Journal of Kunming University of Science and Technology (Engineering Edition), 1997, 22(3): 15−18.

    [14]

    沈政昌, 罗世瑶, 杨义红, 等. 流态化浮选技术概述[J]. 有色金属(选矿部分), 2019(5): 20−26.

    SHEN Z C, LUO S Y, YANG Y H, et al. An overview of fluidized flotation technology[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 20−26.

    [15]

    FAN M M, TAO D, ZHAO Y M, et al. Effect of nanobubbles on the flotation of different sizes of coal particle[J]. Minerals & Metallurgical Processing, 2013, 30(3): 157−161.

    [16]

    文书明. 浮选固液系统的热力学理论及应用[J]. 有色金属(选矿部分), 2024(4): 1−22.

    WEN S M. Thermodynamic theory of flotation solid−liquid systems and its application[J]. Nonferrous Metals(Mineral Processing Section), 2024(4): 1−22.

    [17]

    刘炯天. 旋流—静态微泡柱分选方法及应用(之一) 柱分选技术与旋流—静态微泡柱分选方法[J]. 选煤技术, 2000(1): 42−44.

    LIU J T. Method and application of cyclone−static microbubble column separation (1) Column flotation technique and method of cyclone−static microbubble column separation[J]. Coal Preparation Technology, 2000(1): 42−44.

    [18]

    赵丽娜, 陈傲傲, 张覃, 等. 微细粒磷灰石−白云石浮选体系中矿物疏水聚团行为及矿浆流变性研究[J]. 矿产保护与利用, 2022, 42(5): 104−111.

    ZHAO L N, CHEN A A, ZHANG Q, et al. Study on mineral hydrophobic agglomeration behavior and slurry rheology in microfine apatite−dolomite flotation system[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 104−111.

    [19]

    刘邦瑞. 螯合浮选剂[M]. 北京: 冶金工业出版社, 1982.

    LIU B R. Chelating flotation reagents[M]. Beijing: Metallurgical Industry Press, 1982.

    [20]

    桂夏辉, 邢耀文, 曹亦俊, 等. 低品质煤泥浮选过程强化研究进展及其思考[J]. 煤炭学报, 2021, 46(9): 2715−2732.

    GUI X H, XING Y W, CAO Y J, et al. Recent advances and thinking in process intensification of low quality coal slime flotation[J]. Journal of China Coal Society, 2021, 46(9): 2715−2732.

    [21]

    邱冠周, 伍喜庆, 王毓华, 等. 近年浮选进展[J]. 金属矿山, 2006(1): 41−52.

    QIU G Z, WU X Q, WANG Y H, et al. Advance in flotation in recent years[J]. Metal Mine, 2006(1): 41−52.

    [22]

    陈建华, 徐政和, 陈晔. 硫化矿物电子结构与表面密度泛函理论及在浮选中的应用(英文版)[M]. 长沙: 中南大学出版社, 2022.

    CHEN J H, XU Z H, CHEN Y. Electronic structure of sulfide minerals and density functional theory applied in flotation[M]. Changsha: Central South University Press, 2022.

    [23]

    王杰, 张覃, 邱跃琴, 等. 方解石晶体结构及表面活性位点第一性原理[J]. 工程科学学报, 2017, 39(4): 487−493.

    WANG J, ZHANG Q, QIU Y Q, et al. The first principles of the crystal structure and active sites of calcite[J]. Journal of University of Science and Technology Beijing, 2017, 39(4): 487−493.

    [24]

    王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.

    WANG D Z, HU Y H. Solution chemistry of flotation[M]. Changsha: Hunan Science and Technology Press, 1988.

    [25]

    胡岳华, 王淀佐. 盐类矿物的溶解、表面性质变化与浮选分离控制设计[J]. 中南矿冶学院学报, 1992(3): 273−279.

    HU Y H, WANG D Z. Dissolution/surface property of salt−type minerals and design of schemes of flotation separation[J]. Journal of Central South Institute of Mining and Metallurgy, 1992(3): 273−279.

    [26]

    AMANKONAH J O, SOMASUNDARAN P, ANANTHAPADMABHAN K P. Effects of dissolved mineral species on the dissolution/ precipitation characteristics of calcite and apatite[J]. Colloids and Surfaces, 1985, 15(15): 295−307.

    [27]

    张覃, 李显波, 卯松, 等. 分子模拟在磷矿浮选研究中的应用进展[J]. 矿业科学学报, 2023, 8(1): 102−114.

    ZHANG Q, LI X B, MAO S, et al. Application progress of molecular simulation in phosphate ore flotation[J]. 2023, 8(1): 102−114.

    [28]

    王濮, 潘兆橹, 翁玲宝. 系统矿物学(下)[M]. 北京: 地质出版社, 1987.

    WANG P, PAN Z L, WENG L B. Systematic mineralogy (volume Ⅱ)[M]. Beijing: Geology Press, 1987.

    [29]

    谢俊. 贵州织金磷块岩中稀土类质同象机理研究[D]. 贵阳: 贵州大学, 2020.

    XIE J. Research on the lsomorphism mechanism of rare earths in Zhijin phosphorite in Guizhou[D]. Guiyang: Guizhou University, 2020.

    [30]

    黄小芬, 张覃. 胶磷矿晶体结构研究[J]. 矿物学报, 2011, 31(3): 566−570.

    HUANG X F, ZHANG Q. A study on crystal structure of collophanite[J]. Acta Mineralogica Sinica, 2011, 31(3): 566−570.

    [31]

    卯松. 贵州织金磷矿稀土赋存状态及加工过程中稀土富集机理研究[D]. 贵阳: 贵州大学, 2023.

    MAO S. Occurrence state and enrichment mechanism of rare earth during processing of Zhijin phosphate ore in Guizhou, China[D]. Guiyang: Guizhou University, 2023.

    [32]

    CUI W Y, SONG X L, CHEN J H, et al. Adsorption behaviors of different water structures on the fluorapatite (001) surface: A DFT study[J]. Frontiers in Materials, 2020, 7: 1−8. doi: 10.3389/fmats.2020.00001

    [33]

    XIE J, LI X H, MAO S, et al. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (001) surface: A first−principles calculations[J]. Applied Surface Science, 2018, 444: 699−709. doi: 10.1016/j.apsusc.2018.03.105

    [34]

    XIE J, ZHANG Q, MAO S, et al. Anisotropic crystal plane nature and wettability of fluorapatite[J]. Applied Surface Science, 2019, 493: 294−307. doi: 10.1016/j.apsusc.2019.06.195

    [35]

    王贤晨. 钙镁质磷矿石中矿物表面润湿性调控研究[D]. 贵阳: 贵州大学, 2020.

    WANG X C. Surface wettability regulation of minerals in flotation of calcium−magnesium phosphate ore[D]. Guiyang: Guizhou University, 2020.

    [36]

    何婷, 张覃. 磷矿石中白云石晶体化学特性研究[J]. 矿冶工程, 2012, 32(5): 41−43.

    HE T, ZHANG Q. Study on crystal chemistry characteristics of dolomite in phosphate ores[J]. Mining and Metallurgical Engineering, 2012, 32(5): 41−43.

    [37]

    WANG X Y, LIU W G, DUAN H, et al. The adsorption mechanism of calcium ion on quartz (101) surface: A DFT study[J]. Powder Technology, 2018, 329: 158−166. doi: 10.1016/j.powtec.2018.01.086

    [38]

    王贤晨, 张覃, 陈建华, 等. 氟磷灰石与石英表面电子性质及胺类捕收剂吸附作用研究[J]. 贵州大学学报(自然科学版), 2017, 34(6): 21−28.

    WANG X C, ZHANG T, CHEN J H, et al. Electronic properties and amine collectors effect of fluorapatite and quartz surface[J]. Journal of Guizhou University(Natural Sciences), 2017, 34(6): 21−28.

    [39]

    GOUMANS T P M, WANDER A, BROWN W A, et al. Structure and stability of the (001) alpha−quartz surface[J]. Physical Chemistry Chemical Physics, 2007, 9(17): 2146−2152. doi: 10.1039/B701176H

    [40]

    孙传尧, 印万忠. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社, 2001.

    SUN C Y, YIN W Z. Flotation principals of silicate minerals[M]. Beijing: Science Press, 2001.

    [41]

    KHOLODOV V N, NEDUMOV R I. The role of black shales in the formation of phosphate and manganese ores[J]. Lithology and Mineral Resources, 2011, 46(4): 321−352. doi: 10.1134/S0024490211040043

    [42]

    叶军建. 微细粒磷灰石浮选的界面调控研究[D]. 贵阳: 贵州大学, 2019.

    YE J J. Study on interfacial regulation of fine apatite flotation Summary[D]. Guiyang: Guizhou University, 2019.

    [43]

    HUANG X F, ZHANG Q. Interaction behavior between coarse and fine particles in the reverse flotation of fluorapatite and dolomite[J]. Langmuir, 2023, 39(36): 12931−12943. doi: 10.1021/acs.langmuir.3c02117

    [44]

    石天宇, 张覃. 新型捕收剂AY对胶磷矿与石英表面特性影响研究[J]. 矿冶工程, 2015, 35(6): 49−53.

    SHI T Y, ZHANG Q. Influence of collector AY on surface properties of collophane and quartz[J]. Mining and Metallurgical Engineering, 2015, 35(6): 49−53.

    [45]

    杨婷婷, 李媛媛, 周瑞仙, 等. 基于动态俘泡法的胶磷矿与白云石表面润湿性研究[J]. 矿业研究与开发, 2020, 40(1): 113−118.

    YANG T T, LI Y Y, ZHOU R X, et al. Study on the surface wettability of collophanite and dolomite based on dynamic captive bubble method[J]. Mining Research and Development, 2020, 40(1): 113−118.

    [46]

    ZHANG J Q, LI H, CHAI Y, et al. Crystal properties and interaction with flotation reagent of fluorapatite and dolomite[J]. Minerals Engineering, 2023, 201: 108204. doi: 10.1016/j.mineng.2023.108204

    [47]

    余永富, 葛英勇, 潘昌林. 磷矿选矿进展及存在的问题[J]. 矿冶工程, 2008, 28(1): 29−33.

    YU Y F, GE Y Y, PAN C L. Progress and existing issues in phosphate ore beneficiation[J]. Mineral and Metallurgical Engineering, 2008, 28(1): 29−33.

    [48]

    陈傲傲. 磷矿浮选体系中胶磷矿与白云石固液界面特性研究[D]. 贵阳: 贵州大学, 2023.

    CHEN A A. Solid−liquid interface characteristics of collophanite and dolomite in phosphate flotation system[D]. Guiyang: Guizhou University, 2023.

    [49]

    WANG X C, ZHANG Q. Insight into the influence of surface roughness on the wettability of apatite and dolomite[J]. Minerals, 2020, 10(2): 114. doi: 10.3390/min10020114

    [50]

    AMIRECH A, BOUHENGUEL M, KOUACHI S. Two−stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors[J]. Arabian Journal of Geosciences, 2018, 11(19): 593. doi: 10.1007/s12517-018-3951-2

    [51]

    PENG C S, SONG S X, LU S C. Determination of the solvation film thickness of dispersed particles with the method of Einstein viscosity equation[J]. Journal of University of Science and Technology Beijing, 2006, 12(4): 370−375.

    [52]

    陈傲傲, 张覃. 胶磷矿与白云石界面水化特性的分子模拟研究[J]. 有色金属(选矿部分), 2024: 1−17.

    CHEN A A, ZHANG Q. Molecular simulation study on hydration characteristics of the interface between collophanite and dolomite[J]. 2024: 1−17.

    [53]

    王旭明, 陆英. 表面分析技术新进展及在矿物工程研究中的应用−原子力显微镜[J]. 贵州大学学报(自然科学版), 2018, 35(6): 1−12.

    WANG X M, LU Y. New progress of surface analysis technology and its application in mineral engineering research: Atomic force microscopy[J]. Journal of Guizhou University(Natural Sciences), 2018, 35(6): 1−12.

    [54]

    CHEN A A, WANG X M, ZHANG Q. Interaction and inhibition mechanism of sulfuric acid with fluorapatite (001) surface and dolomite (104) surface: flotation experiments and molecular dynamics simulations[J]. Minerals, 2023, 13(12): 1517. doi: 10.3390/min13121517

    [55]

    刘润哲, 冯其明, 张国范, 等. 油酸钠和亚油酸钠与胶磷矿作用特性研究[J]. 非金属矿, 2018, 41(2): 55−57.

    LIU R Z, FENG Q M, ZHANG G F, et al. The studies of sodium oleate and sodium linoleate interaction characters on phosphate ores[J]. Non−Metallic Mines, 2018, 41(2): 55−57.

    [56]

    YAO J, YIN W, GONG E. Depressing effect of fine hydrophilic particles on magnesite reverse flotation[J]. International Journal of Mineral Processing, 2016, 149: 84−93. doi: 10.1016/j.minpro.2016.02.013

    [57]

    HUANG X F, ZHANG Q. Depression mechanism of acid for flotation separation of fluorapatite and dolomite using ToF−SIMS and XPS[J]. Journal of Molecular Liquids, 2024, 394: 123584. doi: 10.1016/j.molliq.2023.123584

    [58]

    YE J J, WANG X C, LI X B, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11): 1655−1663. doi: 10.1080/01932691.2018.1461639

    [59]

    沈智慧. 贵州松桃微细粒锰矿矿物特性与强化分离机制研究[D]. 贵阳: 贵州大学, 2022.

    SHEN Z H. Study on mineral characteristics and enhanced separation mechanism of Songtao micro−fine manganese ore in Guizhou province[D]. Guiyang: Guizhou University, 2022.

    [60]

    LI X B, ZHANG Q, HOU B, et al. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms[J]. Powder Technology, 2017, 318: 224−229. doi: 10.1016/j.powtec.2017.06.003

    [61]

    黄小芬. 磨矿环境对磷矿石中矿物表面性质的影响机制[D]. 贵阳: 贵州大学, 2024.

    HUANG X F. The influence mechanism of grinding environment on surface properties of minerals in phosphate ore[D]. Guiyang: Guizhou University, 2024.

    [62]

    DERQAOUI M, AARAB I, ABIDI A, et al. The effect of calcium ions on the flotation behavior of fluorapatite[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 45(3): 173–182.

    [63]

    高文鑫, 李显波. 溶解离子对白云石和氟磷灰石浮选及表面性质的影响研究[J]. 矿冶工程, 2023, 43(6): 79−82.

    GAO W X, LI X B. Effect of dissolved ions on flotation and surface properties of dolomite and fluorapatite[J]. Mining and Metallurgical Engineering, 2023, 43(6): 79−82.

    [64]

    CHEN J H, AO X Q, XIE Y, et al. Effects of iron ion dissolution and migration from phosphorite on the surface properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128618. doi: 10.1016/j.colsurfa.2022.128618

    [65]

    FILIPPOVA I V, FILIPPOV L O, LAFHAJ Z, et al. Effect of calcium minerals reactivity on fatty acids adsorption and flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 157−166.

    [66]

    XU W, LIANG Q, TIAN Y, et al. Reverse anionic flotation of dolomitic collophanite using a mixed fatty acid collector: Adsorption behavior and mechanism[J]. Physicochemical Problems of Mineral Processing, 2022, 4(58): 151519.

    [67]

    KOWALCZUK P B. Flotation and hydrophobicity of quartz in the presence of hexylamine[J]. International Journal of Mineral Processing, 2015, 140: 66−71. doi: 10.1016/j.minpro.2015.05.002

    [68]

    宋水祥. 胺类捕收剂对赤铁矿和石英浮选行为及其泡沫稳定性的影响[D]. 昆明: 昆明理工大学, 2020.

    SONG S X. Effect of amine collectors on flotation behavior and foam stability of hematite and quartz[D]. Kunming: Kunming University of Science and Technology, 2020.

    [69]

    邹志雄, 罗惠华, 汤家焰. 常见金属离子对白云母和石英浮选特性的影响[J]. 矿产保护与利用, 2018(1): 66−71.

    ZOU Z X, LUO H H, TANG J Y. Effect of common metal ions on the flotation performance of muscovite and quartz[J]. Conservation and Utilization of Mineral Resources, 2018(1): 66−71.

    [70]

    潘志权, 沈博玮. 基于脂肪酸的磷矿捕收剂的研制与应用进展[J]. 武汉工程大学学报, 2016, 38(1): 1−9.

    PAN Z Q, SHEN B W. Research and application progress in flotation collectors based on fatty acids for phosphorus ores[J]. Journal of Wuhan Institute of Technology, 2016, 38(1): 1−9.

    [71]

    KANG Y T, ZHANG Q. The flotation separation of apatite from dolomite using a fatty acid−based collector and the mechanisms of adsorption[J]. Surface & Interface Analysis, 2023(2): 138−150.

    [72]

    张景奇. 磷灰石和白云石表面捕收剂吸附机理研究[D]. 贵阳: 贵州大学, 2023.

    ZHANG J Q. Study on adsorption mechanism of apatite and dolomite surface collector[D]. Guiyang: Guizhou University, 2023.

    [73]

    RAO K H, ANTTI B, FORSSBERG E. Mechanism of oleate interaction on salt−type minerals, Part Ⅱ. Adsorption and electrokinetic studies of apatite in the presence of sodium oleate and sodium metasilicate[J]. International Journal of Mineral Processing, 1990, 28(1): 59−79.

    [74]

    叶军建, 张覃, 侯波, 等. 显微−反射傅里叶变换红外光谱研究油酸钠与胶磷矿吸附机理[J]. 光谱学与光谱分析, 2018(10): 3036−3040.

    YE J J, ZHANG Q, HOU B, et al. Adsorption of oleate on collophane surface stydied by microscopic reflectance infrared fourier transfor spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018(10): 3036−3040.

    [75]

    CHENNAKESAVULU K, BHASKAR RAJU G, PRABHAKAR S, et al. Adsorption of oleate on fluorite surface as revealed by atomic force microscopy[J]. International Journal of Mineral Processing, 2009, 90(1): 101−104.

    [76]

    EL−MOFTY S, EL−MIDANY A. Calcite flotation in potassium oleate/potassium dihydrogen phosphate system[J]. Journal of Surfactants and Detergents, 2015, 18(5): 905−911. doi: 10.1007/s11743-015-1707-5

    [77]

    YANG B, WANG D H, CAO S H, et al. Selective adsorption of a high−performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite[J]. Journal of Colloid and Interface Science, 2020, 578: 290−303. doi: 10.1016/j.jcis.2020.05.100

    [78]

    EL−MIDANY A A, EL−SHALL H E, SVORONOS S. Bubbles growth and their stability in reactive flotation process[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11): 1534−1538.

    [79]

    卯松, 章铁斌, 张覃. 阴离子对磷灰石和白云石表面性质影响的第一性原理研究[J]. 有色金属(选矿部分), 2022(5): 32−38.

    MAO S, ZHANG T B, ZHANG Q. First−principles study on the effect of anions on the surface properties of apatite and dolomite[J]. Nonferrous metals(Mineral Processing Section), 2022(5): 32−38.

    [80]

    ZHANG S D, DENG Z B, XIE X, et al. Study on the depression mechanism of calcium on the flotation of high−iron sphalerite under a high−alkalinity environment[J]. Minerals Engineering, 2021, 160: 106700. doi: 10.1016/j.mineng.2020.106700

    [81]

    王兢. 中低品位硅钙质沉积型磷块岩脱硅的浮选试验研究[D]. 贵阳: 贵州大学, 2005.

    WANG J. Flotation test study on desilicification of middle and low grade silica−calc sedimentary phosphorite[D]. Guiyang: Guizhou University, 2005.

    [82]

    FANG J, GE Y Y, YU J. Adsorption behavior and mechanism of an ether amine collector on collophane and quartz[J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 301−310.

    [83]

    刘书杰, 何发钰. 磨矿环境对黄铁矿矿浆化学性质及浮选行为影响的研究[J]. 矿冶, 2008, 17(4): 6−10.

    LIU S J, HE F Y. Research on effect of grinding environment on pulp chemical property and flotation behavior of pyrite[J]. Miining and Metallurgy, 2008, 17(4): 6−10.

    [84]

    马英强, 谢材, 李睿, 等. 难免离子与磨矿体系对硫化矿浮选影响的研究进展及展望[J]. 金属矿山, 2020(2): 33−38.

    MA Y Q, XIE C, LI R, et al. Research progress and prospect of the effect of unavoidable ions and grinding system on sulfide flotation system[J]. Metal Mine, 2020(2): 33−38.

    [85]

    罗娜. 菱镁矿与白云石的浮选分离强化研究[D]. 沈阳: 东北大学, 2018.

    LUO N. Research on strengthening of flotation separation of magnesite and dolomite[D]. Shenyang: Northeastern University, 2018.

    [86]

    刘润哲, 朱倪, 李若兰, 等. 碳酸盐型胶磷矿浮选体系中常见离子对胶磷矿和白云石浮选行为的影响[J]. 磷肥与复肥, 2024, 39(1): 16−19.

    LIU R Z, ZHU N, LI R L, et al. Effect of common ions on collophane and dolomite flotation in carbonate type collophane flotation system[J]. Phosphate & Compound Fertilizer, 2024, 39(1): 16−19.

    [87]

    陈俊宏. 磷矿矿浆中金属离子的溶出和迁移对白云石表面性质的影响[D]. 贵阳: 贵州大学, 2022.

    CHEN J H. Influence of metal ion dissolution and migration in phosphate rock pulp on the surface properties of dolomite[D]. Guiyang: Guizhou University, 2022.

    [88]

    李显波, 刘志红, 张小武, 等. 难免离子对中低品位钙镁质磷矿石反浮选的影响[J]. 武汉工程大学学报, 2017, 39(6): 550−556.

    LI X B, LIU Z H, ZHANG X W, et al. Effect of unavoidable ions on flotation of mid−low grade calcareous−magnesium phosphate ore[J]. Journal of Wuhan Institute of Technology, 2017, 39(6): 550−556.

    [89]

    RUAN Y Y, HE D S, CHI R. Review on beneficiation techniques and reagents used for phosphate ores[J]. Minerals, 2019, 9(4): 253. doi: 10.3390/min9040253

    [90]

    时景阳, 叶军建, 王贤晨, 等. 白云石表面溶出Ca2+、Mg2+对其可浮性的影响[J]. 矿产保护与利用, 2017(1): 40−45.

    SHI J Y, YE J J, WANG X C, et al. Influence of calcium and magnesium ions dissolved from dolomite surface on dolomite flotability[J]. Conservation and Utilization of Mineral Resources, 2017(1): 40−45.

    [91]

    周兴杰, 梁欢, 朱倪, 等. 磷矿反浮选回水体系中难免离子对浮选行为的影响[J]. 矿产综合利用, 2024, 45(1): 160−166.

    ZHOU X J, LIANG H, ZHU N, et al. Effect of inevitable ions in phosphate reverse flotation return water systems on flotation behavior[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 160−166.

    [92]

    黄小芬, 张覃. 钙镁离子对胶磷矿表面电性及可浮性的影响[J]. 矿物学报, 2013, 33(2): 185−188.

    HUANG X F, ZHANG Q. Effects of calcium and magnesium ions on the surface electrical properties and floatability of collophosphates[J]. Acta Mineralogica Sinica, 2013, 33(2): 185−188.

    [93]

    CHEN J H, YUAN X, YIN Y L, et al. Effect of Ca2+ dissolution and migration transformation from phosphorite on the surface properties of dolomite[J]. Minerals Engineering, 2022, 188: 107824. doi: 10.1016/j.mineng.2022.107824

    [94]

    GAO W X, ZHANG Q, LI X B. Interaction of Ca2+, Mg2+ with dolomite (104) surface and its effect on caproic acid adsorption: DFT calculation[J]. Applied Surface Science, 2023, 614: 156244. doi: 10.1016/j.apsusc.2022.156244

    [95]

    FARROKHPAY S, ZANIN M. An investigation into the effect of water quality on froth stability[J]. Advanced Powder Technology, 2012, 23(4): 493−497. doi: 10.1016/j.apt.2012.04.012

    [96]

    章铁斌, 刘文宝, 张覃. 钙镁离子对白云石浮选矿浆流变性的影响研究[J]. 贵州科学, 2024, 42(2): 74−77.

    ZHANG T B, LIU W B, ZHANG Q. Effect of calcium and magnesium ions on the rheological characteristics of dolomite pulp[J]. Guizhou Science, 2024, 42(2): 74−77.

    [97]

    于润存, 仇向华. 选矿回水中钙镁离子对磷矿选矿的影响[J]. 金属材料与冶金工程, 2015, 43(5): 60−63.

    YU R C, CHOU X H. Effect of calcium and magnesium ions in mineral return water on phosphate ore dressing[J]. 2015, 43(5): 60−63.

    [98]

    何晓太, 王杰, 崔伟勇, 等. 胶磷矿−白云石体系中离子的溶液化学行为研究[J]. 矿冶工程, 2015, 35(3): 55−57+62.

    HE X T, WANG J, CUI W Y, et al. Solution chemistry of dissolved ions in collophane−dolomite system[J]. Mining and Metallurgical Engineering, 2015, 35(3): 55−57+62.

    [99]

    LIU X, RUAN Y Y, LI C X, et al. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system[J]. International Journal of Mineral Processing, 2017, 167: 95−102. doi: 10.1016/j.minpro.2017.08.006

    [100]

    YIN Y L, AO X Q, XIE Y, et al. Effects of dissolved fluoride in phosphate ore flotation systems on the surfaces properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129922. doi: 10.1016/j.colsurfa.2022.129922

    [101]

    DERHY M, TAHA Y, HAKKOU R, et al. Review of the main factors affecting the flotation of phosphate ores[J]. Minerals, 2020, 10(12): 1109. doi: 10.3390/min10121109

    [102]

    李冬莲, 张亚东. 钙镁离子对胶磷矿浮选影响的溶液化学分析[J]. 矿产保护与利用, 2013(4): 41−45.

    LI D L, ZHANG Y D. Solution chemistry analysis on effects of calcium and magnesium ions in cellophane flotation[J]. Conservation and Utilization of Mineral Resources, 2013(4): 41−45.

    [103]

    AARAB I, DERQAOUI M, EL AMARI K, et al. Influence of surface dissolution on reagents’ adsorption on low−grade phosphate ore and its flotation selectivity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127700. doi: 10.1016/j.colsurfa.2021.127700

    [104]

    谢恒星. 无机调整剂碳酸钠和水玻璃对磷灰石分选特性的影响研究[J]. 中国矿业, 1998, 7(2): 56−59.

    XIE H X. Study on the effect of sodium carbonate and sodium silicate on the separation characteristics of apatite[J]. China Mining Magazine, 1998, 7(2): 56−59.

  • 加载中

(10)

计量
  • 文章访问数:  1231
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2024-06-21
刊出日期:  2024-06-15

目录