-
摘要:
闪锌矿与黄铁矿在低碱条件下的浮选分离一直是选矿领域的热点与难点。传统的锌硫分离方法通常需要在添加石灰的高碱环境下进行,但是大量使用石灰会造成管道堵塞、后续金属矿物活化困难等问题,因此无碱或低碱条件下的锌硫分离浮选药剂的选择尤为重要。综述了锌硫分离浮选药剂的研究进展,介绍了低碱抑制剂(有机抑制剂、无机抑制剂和新型抑制剂)和低碱选择性捕收剂(黄药类、阳离子捕收剂、组合捕收剂和新型捕收剂)的种类以及它们的分选机理,总结了各类低碱浮选药剂的优缺点,并探讨了在低碱环境下分离闪锌矿和黄铁矿所用浮选药剂的研究方向。
Abstract:The separation of sphalerite and pyrite through flotation under low alkali conditions presents a challenging and significant issue within the realm of mineral processing. Conventional methods for separating zinc and sulfur typically require a high−alkali lime environment. Nevertheless, the excessive use of lime can lead to complications such as pipeline obstructions and hinder the activation of metal minerals in subsequent processes.Hence, the careful selection of flotation reagents for zinc−sulfur separation under alkali−free or low−alkali conditions is of paramount importance. The research progress of flotation reagents for zinc−sulfur separation is reviewed.The types of low−alkali inhibitors and low−alkali selective collectors and their separation mechanisms are introduced. The low−alkaline inhibitors encompass organic, inorganic, and novel inhibitors, whereas the low−alkaline selective collectors include xanthates, cationic collectors, combination collectors, and innovative collectors. The advantages and disadvantages of different types of low−alkaline flotation agents are summarized, along with a discussion on the research directions of flotation agents utilized for separating sphalerite and pyrite in a low−alkaline environment.
-
Key words:
- zinc−sulfur separation /
- low alkalinity /
- pyrite /
- sphalerite /
- inhibitor /
- collector
-
-
图 1 葡萄糖单体的结构[15]
Figure 1.
图 2 糊精在黄铁矿表面的吸附构型[20]
Figure 2.
图 3 (a) MIBC与pH值、(b) NaHA用量、(c) 加NaHA后的pH值、(d) CaO存在下NaHA用量对黄铁矿和闪锌矿浮选回收率影响的函数图[22]
Figure 3.
图 4 黄铁矿表面鞣酸钝化膜产生机理[26]
Figure 4.
图 5 黄铁矿表面SDD电位凹陷机理示意图[45]
Figure 5.
表 1 锌硫分离中低碱抑制剂的种类及其作用机理
Table 1. Types and mechanism of low−alkali inhibitors in zinc−sulfur separation
种类 亚类 药剂名称 pH值 作用机理 多糖类 糊精、淀粉 4.0~9.0 通过化学或物理吸附作用在矿物表面,
在黄铁矿表面形成亲水性薄膜或覆盖其活性位点腐殖酸类 腐殖酸钠、腐殖酸铵 6.0~12.0 极性基吸附在矿物表面,与捕收剂产生竞争吸附 有机抑制剂 有机酸类 鞣酸、水杨酸、乳酸 8.0 亲水基团与矿物表面的金属离子作用,形成配合物
吸附于矿物表面,或利用化学吸附改性聚合物 聚丙烯酰胺、木质素、 6.0~10.0 聚合物与矿物表面有多种作用形式:静电、氢键、
化学和物理的相互作用含硫抑制剂 二硫代碳酸乙酸二钠、
二甲基二硫代氨基甲酸钠7.0~10.0 依赖特定的亲固基吸附于矿物表面,
并且消除矿浆中的活化离子,来达到对矿物的抑制氰化物 氰化钠 8.5~9.5 CN−强烈抑制捕收剂在黄铁矿表面作用,
同时消除活化离子无机抑制剂 硫氧化物 亚硫酸盐、亚硫酸氢盐、
二氧化硫以及硫化物7.0~9.0 通过SO32−离子对黄铁矿表面的交互作用,降低Eh,
阻碍双黄药的生成氧化剂类 Ca(ClO)2、NaClO、H2O2 8.0 调整矿浆电位,在氧化气氛下使黄铁矿表面形成
氢氧化铁和硫酸盐等物质
新型抑制剂
Kg−1、HD12、HQD52、HS−1
7.0~10.0
—— -
[1] 何铸文, 杨忆. 黄铁矿型结构的晶体化学[J]. 矿物学报, 1996(4): 423−430.
HE Z W, YANG Y. Crystal chemistry of pyrite−type structure[J]. Journal of Mineralogy, 1996(4): 423−430.
[2] 王淀佐, 龙翔云, 孙水裕, 等. 硫化矿的氧化与浮选机理的量子化学研究[J]. 中国有色金属学报, 1991(1): 15−23.
WANG D Z, LONG X Y, SUN S Y, et al. Quantum chemical study on oxidation and flotation mechanism of sulfide ores[J]. Chinese Journal of Nonferrous Metals, 1991(1): 15−23.
[3] LEHNER S W, SAVAGE K S, AYERS J C, et al. Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni, and As: Variations in semiconducting properties[J]. Journal of Crystal Growth, 2006, 286(2): 306−317. doi: 10.1016/j.jcrysgro.2005.09.062
[4] SAVAGE K S, STEFAN D, LEHNER S W, et al. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products[J]. Applied Geochemistry, 2008, 23(2): 103−120. doi: 10.1016/j.apgeochem.2007.10.010
[5] FERRER I J, DE LA HERAS C, SANCHEZ C, et al. The effect of Ni impurities on some structural properties of pyrite thin films[J]. Journal of Physics: Condensed Matter, 1995, 7(10): 2115. doi: 10.1088/0953-8984/7/10/018
[6] JIANG K, HAN Y, LIU J, et al. Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite[J]. Applied Surface Science, 2023, 615: 156350. doi: 10.1016/j.apsusc.2023.156350
[7] 姜凯, 刘杰, 韩跃新, 等. 自然氧化对黄铁矿可浮性的影响及其机理研究[J]. 金属矿山, 2019(2): 111−114.
JIANG K, LIU J, HAN Y X, et al. The effect of natural oxidation on the floatability of pyrite and its mechanism[J]. Metal Mines, 2019(2): 111−114.
[8] LEPPINEN J O. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non−activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30(3/4): 245−263.
[9] 黄凌云. 闪锌矿晶体结构性质及其铜活化作用[J]. 矿产保护与利用, 2018(3): 26−30.
HUANG L Y. Crystal structure properties of sphalerite and its copper activation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 26−30.
[10] HARMER S L, GONCHAROVA L V, KOLAROVA R, et al. Surface structure of sphalerite studied by medium energy ion scattering and XPS[J]. Surface Science, 2007, 601(2): 352−361. doi: 10.1016/j.susc.2006.10.001
[11] 陈建华, 曾小钦, 陈晔, 等. 含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J]. 中国有色金属学报, 2010, 20(4): 765−771.
CHEN J H, ZENG X Q, CHEN Y, et al. First−principles calculation of the electronic structure of sphalerite with vacancy and impurity defects[J]. Chinese Journal of Nonferrous Metals, 2010, 20(4): 765−771.
[12] 曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109−117.
ZENG Y, LIU J, WANG Y, et al. Research progress on the effect and mechanism of typical metal ions on sphalerite flotation behavior[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109−117.
[13] 黄红军. 低活性难选硫铁矿高效活化应用基础研究[D]. 长沙: 中南大学, 2011.
HUANG H J. Applied basic research on high−efficiency activation of low−activity refractory pyrite[D]. Changsha: Central South University, 2011.
[14] 彭建城, 熊道陵, 马智敏, 等. 有机抑制剂在浮选中抑制黄铁矿的研究进展[J]. 2012, 3(2): 61−65.
PENG J C, XIONG D L, MA Z M, et al. Research progress of organic depressants inhibiting pyrite in flotation[J]. 2012, 3(2): 61−65.
[15] 魏民, 吕晋芳, 郑永兴, 等. 淀粉对硫化矿物和脉石矿物的选择性抑制作用及机理研究进展[J]. 矿产保护与利用, 2021, 41(2): 58−64.
WEI M, LV J F, ZHENG Y X, et al. Research progress on selective inhibition of starch on sulfide minerals and gangue minerals and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 58−64.
[16] CHAPAGAI M K, FLETCHER B, GIDLEY M J, et al. Characterization of structure−function properties relevant to copper−activated pyrite depression by different starches[J]. Carbohydrate Polymers, 2023, 312: 120841. doi: 10.1016/j.carbpol.2023.120841
[17] FLETCHER B, CHIMONYO W, PENG Y, et al. A comparison of native starch, oxidized starch and CMC as copper−activated pyrite depressants[J]. Minerals Engineering, 2020, 156(1). doi: 10.1016/j.mineng.2020.106532
[18] RAN J, LI Y, ZHAO X, et al. Utilization of soluble starch as the depressant to flotation separation of pyrite from arsenopyrite[J]. Separation and Purification Technology, 2023, 310: 123155. doi: 10.1016/j.seppur.2023.123155
[19] FLETCHER B, CHIMONYO W, PENG Y, et al. The potential of modified starches as mineral flotation depressants[J]. Mining, Metallurgy & Exploration, 2021, 38(2): 739−750.
[20] VALDIVIESO A L, CERVANTES T C, SONG S, et al. Dextrin as a non−toxic depressant for pyrite in flotation with xanthates as collector[J]. Minerals Engineering, 2004, 17(9/10): 1001−1006. doi: 10.1016/j.mineng.2004.04.003
[21] AČAI P, SORRENTI E, GORNER T, et al. Pyrite passivation by humic acid investigated by inverse liquid chromatography[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337(1/2/3): 39−46.
[22] WEI Q, DONG L, JIAO F, et al. The synergistic depression of lime and sodium humate on the flotation separation of sphalerite from pyrite[J]. Minerals Engineering, 2021, 163: 106779. doi: 10.1016/j.mineng.2021.106779
[23] LÜ C, WANG Y, QIAN P, et al. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1814−1821. doi: 10.1016/j.cjche.2018.02.014
[24] 邱仙辉, 孙传尧. 古尔胶和鞣酸添加方式对硫化矿浮选的影响[J]. 工程科学学报, 2014, 36(3): 283−288.
QIU X H, SUN C Y. Effects of Guer gum and tannic acid addition methods on sulfide ore flotation[J]. Journal of Engineering Science, 2014, 36(3): 283−288.
[25] 邱仙辉, 孙传尧, 邱廷省, 等. 鞣酸对方铅矿及黄铁矿的抑制作用[J]. 东北大学学报 (自然科学版), 2015, 36(1): 124−128.
QIU X H, SUN C Y, QIU T S, et al. Inhibitory effect of tannic acid on lead and pyrite[J]. Journal of Northeast University (Natural Science Edition), 2015, 36(1): 124−128.
[26] LI D, LIU C, LIU Y, et al. Tannic acid as an eco−friendly natural passivator for the inhibition of pyrite oxidation to prevent acid mine drainage at the source[J]. Applied Surface Science, 2022, 591: 153172. doi: 10.1016/j.apsusc.2022.153172
[27] HAN G, WEN S, WANG H, et al. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism[J]. Journal of Molecular Liquids, 2019, 296: 111774. doi: 10.1016/j.molliq.2019.111774
[28] AHMADI M, GHARABAGHI M, ABDOLLAHI H, et al. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system[J]. Advanced Powder Technology, 2018, 29(12): 3155−3162. doi: 10.1016/j.apt.2018.08.015
[29] CHEN J H, LI Y Q, LONG Q R, et al. Molecular structures and activity of organic depressants for marmatite, jamesonite and pyrite flotation[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1993−1999. doi: 10.1016/S1003-6326(09)60407-6
[30] HAN G, WEN S, WANG H, et al. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite[J]. Separation and Purification Technology, 2020, 240: 116650. doi: 10.1016/j.seppur.2020.116650
[31] KHOSO S A, HU Y, LYU F, et al. Selective separation of chalcopyrite from pyrite with a novel non−hazardous biodegradable depressant[J]. Journal of Cleaner Production, 2019, 232: 888−897. doi: 10.1016/j.jclepro.2019.06.008
[32] KHOSO S A, GAO Z, TIAN M, et al. The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in CuS flotation scheme[J]. Journal of Molecular Liquids, 2020, 299: 112198. doi: 10.1016/j.molliq.2019.112198
[33] MONYAKE K C, ALAGHA L. Enhanced separation of base metal sulfides in flotation systems using Chitosan−grafted−Polyacrylamides[J]. Separation and Purification Technology, 2022, 281: 119818. doi: 10.1016/j.seppur.2021.119818
[34] BOULTON A, FORNASIERO D, RALSTON J, et al. Selective depression of pyrite with polyacrylamide polymers[J]. International Journal of Mineral Processing, 2001, 61(1): 13−22. doi: 10.1016/S0301-7516(00)00024-7
[35] 周艳飞, 姚伟, 付强, 等. 聚丙烯酰胺对黄铁矿浮选行为的影响及其机制研究[J]. 矿冶, 2023, 32(5): 45−50.
ZHOU Y F, YAO W, FU Q, et al. The effect of polyacrylamide on the flotationbehavior of pyrite and its mechanism[J]. Mining and Metallurgical, 2023, 32(5): 45−50.
[36] BICAK O, EKMEKCI Z, BRADSHAW D J, et al. Adsorption of guar gum and CMC on pyrite[J]. Minerals Engineering, 2007, 20(10): 996−1002. doi: 10.1016/j.mineng.2007.03.002
[37] 于淙权, 李光胜, 朱幸福, 等. 不同抑制剂对黄铁矿的抑制作用研究进展[J]. 山东化工, 2022, 51(3): 73−75.
YU C Q, LI G S, ZHU X F, et al. Research progress on the inhibitoryeffect of different inhibitors on pyrite[J]. Shandong Chemical Industry, 2022, 51(3): 73−75.
[38] FENG B, FENG Q, LU Y, et al. The effect of PAX/CMC addition order on chlorite/pyrite separation[J]. Minerals Engineering, 2013, 42: 9−12. doi: 10.1016/j.mineng.2012.10.011
[39] 熊兴泉, 张辉, 高利柱, 等. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806−819
XIONG X Q, ZHANG H, GAO L Z, et al. Research progress on functionalization and application of lignin[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806−819.
[40] MU Y, PENG Y, LAUTEN R A, et al. The mechanism of pyrite depression at acidic pH by lignosulfonate−based biopolymers with different molecular compositions[J]. Minerals Engineering, 2016, 92: 37−46. doi: 10.1016/j.mineng.2016.02.007
[41] MU Y, PENG Y, LAUTEN R A, et al. The depression of copper−activated pyrite in flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96: 113−122.
[42] MU Y, PENG Y, LAUTEN R A, et al. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate−based biopolymer depressant[J]. Electrochimica Acta, 2015, 174: 133−142. doi: 10.1016/j.electacta.2015.05.150
[43] 陈万雄, 刘清侠. 煤黄铁矿低分子量有机抑制剂研究[J]. 煤炭科学技术, 1994, 22(9): 33−36.
CHEN W X, L Q X, Study on low molecular weight organic inhibitors of coal pyrite[J]. Coal Science and Technology, 1994, 22(9): 33−36.
[44] 邹志红, 严伟, 蒋立建, 等. N, N−二(2−苯并咪唑亚甲基)二硫代氨基甲酸钠的合成[J]. 精细石油化工进展, 2001, 2(12): 4−6.
ZOU Z H, YAN W, JIANG L J, et al. Synthesis of sodium N, N−bis(2−benzimidazolylmethylene)dithiocarbamate[J]. Fine Petrochemical Progress, 2001, 2(12): 4−6.
[45] BAI X, LIU J, FENG Q, et al. Study on selective adsorption of organic depressant on chalcopyrite and pyrite surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127210. doi: 10.1016/j.colsurfa.2021.127210
[46] 刘润清, 孙伟, 胡岳华, 等. 巯基类小分子有机抑制剂对复杂硫化矿物浮选行为的抑制机理[J]. 中国有色金属学报, 2006(4): 746−751.
LIU R Q, SUN W, HU Y H, et al. Inhibitory mechanism of thiol small molecule organic inhibitors on flotation behavior of complex sulfide minerals[J]. Chinese Journal of Nonferrous Metals, 2006(4): 746−751.
[47] 杨旭, 李育彪, 彭樱, 等. 黄铁矿抑制剂与活化剂研究进展[J]. 金属矿山, 2020(10): 34−40.
YANG X, LI Y B, PENG Y, et al. Research progress on pyrite inhibitors and activators[J]. Metal Mines, 2020(10): 34−40.
[48] MU Y, PENG Y. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water[J]. Minerals Engineering, 2019, 142: 105921. doi: 10.1016/j.mineng.2019.105921
[49] 贺壮志, 朱阳戈, 肖巧斌, 等. 低碱下含硫化物的抑硫机理和行为研究现状[J]. 有色金属(选矿部分), 2023(4):156−162.
HE Z Z, ZHU Y G, XIAO Q B, et al. Research status of sulfur inhibition mechanism and behavior of sulfide under low alkali[J]. Nonferrous Metals(Mineral Processing Section), 2023(4): 156−162.
[50] HE S, SKINNER W, FORNASIERO D. Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite[J]. International Journal of Mineral Processing, 2006, 80(2/3/4): 169−176. doi: 10.1016/j.minpro.2006.03.009
[51] OLSEN C, MAKNI S, HART B, et al. Application of Surface Chemical Analysis to the Industrial Flotation Process of a Complex Sulphide Ore[C]//Proceeding; XXVI International Mineral Processing Congress (IMPC 2012), New Delhi, India. 2012.
[52] 邱廷省, 罗仙平, 方夕辉, 等. 黄铁矿氧化抑制行为及机理研究[J]. 矿产综合利用, 2001(5): 17−20.
QIU T S, LUO X P, FANG X H, et al. Research on oxidation inhibition behavior and mechanism of pyrite[J]. Comprehensive Utilization of Mineral Resources, 2001(5): 17−20.
[53] 李达, 刘建, 杨东, 等. 国外某高硫低锌尾矿锌强化回收试验研究[J]. 矿冶, 2023(6): 44−51.
LI D, LIU J, YANG D, et al. [J]. Mining and Metallurgy, 2023(6): 44−51.
[54] 王体琛, 邓久帅, 卢雨, 等. 新型硫抑制剂HD12替代石灰的试验研究[J]. 金属矿山, 2023(9): 98−102.
WANG T C, DENG J S, LU Y, et al. Experimental study on replacement of lime by a new sulfur inhibitor HD12[J]. Metal Mine, 2023(9): 98−102.
[55] 李希掌, 曾娜, 向平, 等. 湖南某铅锌矿无碱浮选试验研究[J]. 矿冶工程, 2021, 41(3): 5.
LI X Z, ZENG N, XIANG P, et al. Experimental study on alkali−free flotation of a lead−zinc mine in Hu’nan[J]. Mining and Metallurgy Engineering, 2021, 41(3): 5.
[56] 张胜东. 闪锌矿铁含量对其浮选及与黄铁矿分离的影响[D]. 昆明: 昆明理工大学, 2021.
ZHANG S D. Effect of iron content of sphalerite on its flotation and separation from pyrite[D]. Kunming: Kunming University of Science and Technology, 2021.
[57] 翁孝卿, 刘丹章, 李洪强, 等. 胺类阳离子捕收剂表面物理化学性能研究的综合实验[J]. 实验技术与管理, 2021, 38(6): 5.
WENG X Q, LIU D Z, LI H Q, et al. Comprehensive experiment on surface physical and chemical properties of amine cationic collectors[J]. Experimental Technology and Management, 2021, 38(6): 5.
[58] J·S·拉斯哥夫斯基, 崔洪山, 李长根. 用阳离子捕收剂浮选硫化矿物[J]. 国外金属矿选矿, 2003, 40(4): 7.
J. S. LASKOVSKI, CUI HONGSHAN, LI CHANGGEN. Flotation of sulfide minerals with cationic collector[J]. Foreign Metal Ore Dressing, 2003, 40(4): 7.
[59] 邓春虎, 吕宏芝, 黄虎辉, 等. 云南某低品位硫化银铅锌矿选矿优化研究[J]. 有色金属(选矿部分), 2020(2): 6.
DENG C H, LV H Z, HUANG H H, et al. Study on beneficiation optimization of a low−grade silver sulfide lead−zinc mine in Yunnan[J]. Nonferrous Metals (Beneficiation Section), 2020(2): 6.
[60] 胡生福, 彭鑫, 冯媛媛, 等. 四川某铅锌矿选锌新型捕收剂工业试验研究[J]. 金属矿山, 2023(12): 154−157.
HU S F, PENG X , FENG Y Y, et al. Industrial experimental study on a new collector for zinc dressing in a lead−zinc mine in Sichuan[J]. Metal Mine, 2023(12): 154−157.
-