-
摘要:
在高梯度磁选分离过程中存在机械夹带、磁性夹带、竞争捕获等现象,最终导致选择性差、分选腔堵塞、分选效率低等一系列问题。目前科研工作者针对高梯度磁选的理论研究主要集中于对颗粒受力分析并力的大小计算、颗粒轨迹模型和颗粒堆积模型的构建、聚磁介质的研发与优化。以颗粒受力为基础,通过颗粒的堆积模型和轨迹模型分析造成选择性差以及效率低的原因,综述聚磁介质的研发与优化,旨在为高梯度磁选技术在工业应用中的优化与理论研究提供参考,并对高梯度磁选技术理论研究的未来趋势进行展望。
Abstract:Mechanical entrainment, magnetic entrainment and competitive capture occur in the separation process of high gradient magnetic separation, ultimately leading to a number of problems such as poor selectivity, clogging of the sorting chamber and low sorting efficiency. At present, the theoretical study of high gradient magnetic separation mainly focuses on particle force analysis and calculation, the construction of particle trajectory model and particle stacking model, and the research and development and optimisation of polymagnetic media. Based on the particle force, this paper analyses the causes of poor selectivity as well as low efficiency through the particle stacking model and trajectory model, and reviews the development and optimization of matrix, aiming to provide a reference for the optimization and theoretical research of high-gradient magnetic separation technology in industrial applications, as well as looking forward to the future trend of theoretical research of high-gradient magnetic separation technology.
-
Key words:
- magnetic separation /
- high gradients /
- field distribution /
- particle entrainment
-
-
图 1 机械夹带示意图(a—穿透;b—滞留;c—拦截)[8]
Figure 1.
图 2 吸引夹带示意图(a—连生体吸引;b—黏附吸引)[7]
Figure 2.
图 3 颗粒在聚磁介质上堆积示意图(a—低磁场中;b—高磁场中)[10]
Figure 3.
图 4 直径为a的聚磁介质周围的磁场分布[8]
Figure 4.
图 5 聚磁介质的横截面[23]
Figure 5.
图 6 围绕聚磁介质的颗粒运动轨迹(a—纵向配置;b—横向配置)[24]
Figure 6.
图 7 不同直径聚磁介质周围的磁场分布[38]
Figure 7.
图 8 聚磁介质矩形排列方式(左)和聚磁介质菱形排列方式(右) [45]
Figure 8.
-
[1] DAI P, TAO M, LI X. Effect of lime (CaOH+) on chalcopyrite−arsenopyrite separation in high gradient magnetic separation: Experiment and molecular simulation[J]. Separation and Purification Technology, 2024, 333: 2−7.
[2] HU Z, HAN L, LU D, et al. Pulsation curves strengthen the high gradient magnetic separation process Ⅱ: Consideration of separation performance[J]. Minerals Engineering, 2024, 205: 108480−108490. doi: 10.1016/j.mineng.2023.108480
[3] LI W, SUN J, ZHANG X, et al. Influence of the screw−thread rod matrix on the magnetic capture behavior of bastnaesite[J]. Powder Technology, 2024, 440: 119738−119752. doi: 10.1016/j.powtec.2024.119738
[4] LIN H , LI X , LEI Z, et al. Developing high gradient magnetic separators for greener production: Principles, design, and optimization[J]. Journal of Magnetism and Magnetic Materials, 2023: 587.
[5] ZHENG X, WANG Y, LU D. A realistic description of influence of the magnetic field strength on high gradient magnetic separation[J]. Minerals Engineering, 2015, 79: 94−101. doi: 10.1016/j.mineng.2015.06.004
[6] WATSON JHP, LI Z. A study on mechanical entrapment in HGMS and vibration HGMS[J]. Minerals Engineering, 1991, 4(7/8/9/10/11): 815−823.
[7] HU Z, LIU J, GAN T, et al. High−intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium−ion batteries[J]. Separation and Purification Technology, 2022, 297: 121486−121499. doi: 10.1016/j.seppur.2022.121486
[8] XUE Z, WANG Y, ZHENG X, et al. Mechanical entrainment study by separately collecting particle deposit on matrix in high gradient magnetic separation[J]. Minerals Engineering, 2022, 178: 107435−10746. doi: 10.1016/j.mineng.2022.107435
[9] XIONG D, LIU S, CHEN J. New technology of pulsating high gradient magnetic separation[J]. International Journal of Mineral Processing, 1998, 54(2): 111−127. doi: 10.1016/S0301-7516(98)00009-X
[10] SVOBODA J. The effect of magnetic field strenght on the efficiency of magnetic separation[J]. Minerals Engineering, 1994, 7(5): 747−757.
[11] ZHENG X, WANG Y, LU D. Investigation of the particle capture of elliptic cross−sectional matrix for high gradient magnetic separation[J]. Powder Technology, 2016, 297: 303−310. doi: 10.1016/j.powtec.2016.04.032
[12] ZHENG X, XUE Z, WANG Y, et al. Modeling of particle capture in high gradient magnetic separation: A review[J]. Powder Technology, 2019, 352: 159−169. doi: 10.1016/j.powtec.2019.04.048
[13] HU Z, LU D, ZHENG X, et al. Development of a high−gradient magnetic separator for enhancing selective separation: A review[J]. Powder Technology, 2023, 421: 118435−118445. doi: 10.1016/j.powtec.2023.118435
[14] CHEN L. Effect of magnetic field orientation on high gradient magnetic separation performance[J]. Minerals Engineering, 2011, 24(1): 88−90. doi: 10.1016/j.mineng.2010.09.019
[15] HU Z. Model of particle accumulation on matrices in transverse field pulsating high gradient magnetic separator[J]. Minerals Engineering, 2020, 146: 106105−106116. doi: 10.1016/j.mineng.2019.106105
[16] DAHE X. Dynamic analysis of weakly magnetic mineral particles in high gradient magnetic field of rod medium[J]. Metal Mine, 1998, 8: 9−12.
[17] YING T Y, YIACOUMI S, TSOURIS C. High−gradient magnetically seeded filtration[J]. Chemical Engineering Science, 2000, 55(6): 1101−1113. doi: 10.1016/S0009-2509(99)00383-8
[18] JOSHI J B, NANDAKUMAR K, PATWARDHAN A W, et al. Computational fluid dynamics[M]//Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment. Elsevier, 2019, 21−138.
[19] NESSET J, FINCH J. The static (buildup) model of particle accumulation on single wires in high gradient magnetic separation: Experimental confirmation[J]. IEEE Trans Magn, 1981, 17(4): 1506−1509. doi: 10.1109/TMAG.1981.1061242
[20] WATSON J H P, LI Z. Theoretical and single−wire studies of vortex magnetic separation[J]. Minerals Engineering, 1992, 5(10/11/12): 1147−1165. doi: 10.1016/0892-6875(92)90156-4
[21] XUE Z, WANG Y, ZHENG X, et al. Role of gravitational force on mechanical entrainment of nonmagnetic particles in high gradient magnetic separation[J]. Minerals Engineering, 2022, 186: 107726−107735. doi: 10.1016/j.mineng.2022.107726
[22] 许金越, 王伊琳, 宋少先. 干式振动高梯度磁选机的分选机理与试验研究[J]. 金属矿山, 2023(2): 189−195.
XU J Y, WANG Y L, SONG S X. Sorting mechanism and experimental study of dry vibrating high gradient magnetic separator[J]. Metal Mine, 2023(2): 189−195.
[23] WATSON J H P. Magnetic filtration[J]. Journal of Applied Physics, 1973, 44(9): 4209−4213. doi: 10.1063/1.1662920
[24] WATSON J H P. Theory of capture of particles in magnetic high−intensity filters[J]. IEEE Transactions on Magnetics, 1975, 11(5): 1597−1599. doi: 10.1109/TMAG.1975.1058807
[25] LUBORSKY F, DRUMMOND B. High gradient magnetic separation: Theory versus experiment[J]. IEEE Trans. Magn, 1975, 6: 1696−1700.
[26] BADESCU, V, ROTARIU, et al. Magnetic capture modelling for a transversal high filter[J]. International Journal of Applied Electromagnetics and Mechanics, 1996, 7: 57−67.
[27] EBNER NA, GOMES CSG, HOBLEY TJ, et al. Filter capacity predictions for the capture of magnetic microparticles by high−gradient magnetic separation[J]. IEEE Trans Magn, 2007, 43(5): 1941−1949. doi: 10.1109/TMAG.2007.892080
[28] GE W, ENCINAS A, ARAUJO E, et al. Magnetic matrices used in high gradient magnetic separation (HGMS): A review[J]. Results in Physics, 2017, 7: 4278−4286. doi: 10.1016/j.rinp.2017.10.055
[29] LESLIE B W. Magnetic separator: CAD715885[P]. CA715885A[2024−06−16].
[30] SVOBODA J, FUJITA T. Recent developments in magnetic methods of material separation[J]. Minerals Engineering, 2003, 16(9): 785−792. doi: 10.1016/S0892-6875(03)00212-7
[31] SVOBODA J. Magnetic techniques for the treatment of materials[M]. Springer Netherlands, 2004.
[32] KOLM H H. Process for magnetic separation: US3676337D[P]. 2024−03−24.
[33] 李文博, 韩跃新, 汤玉和, 等. 高梯度磁选机聚磁介质的研究概况及发展趋势[J]. 金属矿山, 2012, 41(9): 129−133. doi: 10.3969/j.issn.1001-1250.2012.09.035
LI W B, HAN Y X, TANG Y H, et al. Research overview and development trend of matrix for high gradient magnetic separator[J]. Metal Mine, 2012, 41(9): 129−133. doi: 10.3969/j.issn.1001-1250.2012.09.035
[34] 白江虎, 李具仓, 张志刚, 等. 聚磁介质用不锈导磁材料开发[J]. 中国冶金, 2017, 27(12): 4.
BAI J H, LI J C, ZHANG Z G, et al. Development of Stainless Conductive Materials for matrix[J]. China Metallurgy, 2017, 27(12): 4.
[35] GRAHAM MD. A precaution on using 316L stainless wire in HGMS matrices[J]. Magnetic Separation News, 1986, 2(2): 91−94. doi: 10.1155/1986/75394
[36] WU W, WU C, HONG PKA, LIN C. Capture of metallic copper by high gradient magnetic separation system[J]. Environmental Technology, 2011, 32(13): 1427−1433. doi: 10.1080/09593330.2010.538439
[37] 黄燕, 李思媛. 一种铁钴合金/氮共掺杂碳气凝胶电极材料的制备方法: CN02010498865.0[P].[2024−06−16]
HUANG Y, LI S Y. Preparation of an iron−cobalt alloy/nitrogen co−doped carbon aerogel electrode material: CN02010498865.0[P]. [2024−06−16].
[38] ZHENG X, WANG Y, LU D, et al. Theoretical and experimental study on elliptic matrices in the transversal high gradient magnetic separation[J]. Minerals Engineering, 2017, 111: 68−78. doi: 10.1016/j.mineng.2017.06.007
[39] BADESCU V, MURARIU V, ROTARIU O, et al. A new modeling of the initial buildup evolution on a wire in an axial HGMF filter[J]. Journal of Magnetism and Magnetic Materials, 1996, 163(1/2): 225−231. doi: 10.1016/S0304-8853(96)00319-8
[40] ZHENG X, WANG Y, LU D. Study on capture radius and efficiency of fine weakly magnetic minerals in high gradient magnetic field[J]. Minerals Engineering, 2015, 74: 79−85. doi: 10.1016/j.mineng.2015.02.001
[41] 李文博, 汤玉和, 韩跃新, 等. 聚磁介质对高梯度磁选效果的影响[J]. 金属矿山, 2013, 42(12): 105−107.
LI W B, TANG Y H, HAN Y X, et al. Influence of matrix on the effectiveness of high gradient magnetic separation[J]. Metal Mine, 2013, 42(12): 105−107.
[42] 于洪军, 王忠生, 李东, 等. 聚磁介质充填率对齐大山选矿厂赤铁矿高梯度强磁选的影响[J]. 金属矿山, 2017(12): 4. doi: 10.3969/j.issn.1001-1250.2017.12.024
YU H J, WANG Z S, LI D, et al. Influence of matrix filling rate on high gradient strong magnetic separation of hematite in Qidashan processing plant[J]. Metal Mine, 2017(12): 4. doi: 10.3969/j.issn.1001-1250.2017.12.024
[43] CHEN L, LIU W, ZENG J, et al. Quantitative investigation on magnetic capture of single wires in pulsating HGMS[J]. Powder Technology, 2017, 313: 54−59. doi: 10.1016/j.powtec.2017.03.011
[44] REN L, ZENG S, ZHANG Y. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software[J]. International Journal of Mining Science and Technology, 2015, 25(3): 479−487. doi: 10.1016/j.ijmst.2015.03.024
[45] ZHENG X, GUO N, CUI R, et al. Magnetic Field simulation and experimental tests of special cross−section shape matrices for high gradient magnetic separation[J]. IEEE Transactions on Magnetics, Published online 2017, 53(3): 1−10.
[46] XUE Z, WANG Y, ZHENG X, et al. Particle capture of special cross−section matrices in axial high gradient magnetic separation: A 3D simulation[J]. Separation and Purification Technology, 2020, 237: 116375−116386. doi: 10.1016/j.seppur.2019.116375
[47] LI W, ZHOU L, HAN Y, et al. Numerical simulation and experimental verification for magnetic field analysis of thread magnetic matrix in high gradient magnetic separation[J]. Powder Technology, 2019, 355: 300−308. doi: 10.1016/j.powtec.2019.07.024
[48] LI W, SUN J, ZHANG X, et al. Influence of the screw−thread rod matrix on the magnetic capture behavior of bastnaesite[J]. Powder Technology, 2024, 440: 1197738−1197749.
[49] 黄建雄. 高梯度磁选过程的棒介质排列组合研究[D]. 昆明: 昆明理工大学, 2013.
HUANG J X. Study of matrix arrangement combinations for high gradient magnetic separation processes [D]. Kunming: Kunming University of Science and Technology, 2013.
[50] CHEN L, DING L, ZHANG H, et al. Slice matrix analysis for combinatorial optimization of rod matrix in PHGMS[J]. Minerals Engineering, 2014, 58: 104−107. doi: 10.1016/j.mineng.2014.01.024
[51] CHEN L Z, XU G D, WEN S M, et al. Effect of rod arrangement in matrix on high gradient magnetic separation performance[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 3351−3354. doi: 10.4028/www.scientific.net/AMR.634-638.3351
[52] 丁利. 高梯度磁选过程的组合式棒介质研究[D]. 昆明: 昆明理工大学, 2014
DING L. Study of combined matrix for high gradient magnetic separation processes[D]. Kunming: Kunming University of Science and Technology, 2014
[53] 舒有顺, 曾海鹏, 黄红军. 六偏磷酸钠对钾长石和赤铁矿的分散作用机理[J]. 矿冶工程, 2023, 43(2): 61−65. doi: 10.3969/j.issn.0253-6099.2023.02.014
SHU Y, ZENG H, HUANG H. Dispersion mechanism of sodium hexametaphosphate on potassium feldspar and hematite[J]. Mimimg And Metallurgical Engeering, 2023, 43(2): 61−65. doi: 10.3969/j.issn.0253-6099.2023.02.014
[54] 许耀群, 李曙光, 王娟, 等. 超声波及分散剂对纳米SiO2/CaCO3/Al2O3颗粒分散特性的影响[J]. 材料导报, 2018, 32(S1): 300−304.
XU Y Q, LI S G, WANG J, et al, Effect of dispersion characteristics of Nano−SiO2/CaCO3/Al2O3 by ultrasonicand dispersants[J]. Materials Reports, 2018, 32(S1): 300−304.
[55] HUANG Z, LIN M, QIU R, et al. A novel technology of recovering magnetic micro particles from spent lithium−ion batteries by ultrasonic dispersion and waterflow−magnetic separation[J]. Resources Conservation and Recycling, 2021, 164(3): 105172−105181.
[56] 魏婷婷. 砂质高岭土选矿提纯试验研究[D]. 武汉: 武汉理工大学, 2009.
WEI T T. Experimental study on the preparation and purification of sandy kaolinite [D]. Wuhan: Wuhan University of Technology, 2009.
-