-
摘要:
为掌握逐孔起爆孔间延期时间对爆破破岩效果的影响规律,采用数值模拟手段,以某矿山灰岩为例,建立了双孔爆破数值模型,并标定了灰岩RHT本构模型的34个参数。模拟结果表明:逐孔起爆时,应力增强现象随着延期时间的增大而增大,但当Δt由0增大到80 μs时,孔间叠加产生的应力增强可以忽略不计;先爆孔的裂纹扩展面积随着延期时间的增加而增大,后爆孔的裂纹扩展面积随着延期时间的减小而减小,孔间裂纹扩展的宽度随着延期时间的增加而增大。研究成果为数码雷管精确延时性能的推广应用提供了设计依据。
Abstract:In order to understand the influence of the delay time between holes on the rock breaking effect of different rocks, a numerical model of double−hole blasting was established by means of numerical simulation using limestone from a mine as an example, and 34 parameters of the RHT constitutive model of limestone were calibrated. The simulation results showed that the stress enhancement phenomenon increased with the increase of delay time, but when Δt increased to 80 μs, the stress enhancement caused by the superposition between holes can be ignored. The crack propagation area of the pre−blasting hole increased with the increase of the delay time, the crack propagation area of the post−blasting hole decreased with the decrease of the delay time, and the width of the crack propagation between the holes increased with the increase of the delay time. The research results provide a design basis for the popularization and application of the precise delay performance of digital detonators.
-
-
表 1 灰岩静力学参数
Table 1. Limestone statics parameters
岩性 密度
/(g∙cm−3)单轴抗压
强度/MPa抗拉
强度/MPa剪切模量
/GPa泊松比 纵波波速
/(m∙s−1)灰岩 2.68 59.89 3.34 16.21 0.3 3698 表 2 不同围压下岩石力学参数
Table 2. Rock mechanics parameters under different confining pressures
0.00 59.89 0.33 1.00 20.00 199.82 1.33 3.00 40.00 287.15 2.04 4.13 60.00 359.71 2.67 5.00 80.00 424.35 3.25 5.75 表 3 灰岩RHT参数
Table 3. RHT parameters of limestone
参数名称 参数值 参数名称 参数值 初始密度 / (g·cm−3)
2.68 压缩屈服面参数 0.7 单轴抗压强度fc/MPa 59.89 剪切模量缩减系数XI 0.55 抗压强度比 0.055769 失效面参数A 2.55713 剪压强度比 0.18 失效面指数N 0.70136 剪切模量G/GPa 0.16 拉压子午比参数Q0 0.68 初始孔隙度 1.0 罗德角相关系数B 0.05 孔隙开始压碎时压力 /MPa
39.93 压缩应变率指数 0.02 孔隙完全压碎时压力 /MPa
0.06 拉伸应变率指数 0.025 孔隙度指数 3 参考压缩应变率 /s−1
3.00E−05 Hugonoit多项式参数A1/GPa 36.65 参考拉伸应变率 /s−1
3.00E−06 Hugonoit多项式参数A2/GPa 32.98 失效压缩应变率 /s−1
3.00E+25 Hugonoit多项式参数A3/GPa 3.39 失效拉伸应变率 /s−1
3.00E+25 状态方程参数B0 0.9 损伤参数D1 0.04 状态方程参数B1 0.9 损伤指数D2 1 状态方程参数T1/GPa 36.65 最小失效应变 0.01 状态方程参数T2 0 残余应力强度参数Af 0.25 压缩屈服面参数 0.8 残余应力强度指数Nf 0.62 表 4 炸药材料及状态方程参数
Table 4. Explosive materials and state equation parameters
ρ/(g·cm−3) D/(m·s−1) A/GPa B/GPa R1 R2 ω 1.3 4500 214.4 0.182 4.2 0.9 0.15 -
[1] LI P, LU W, WU X, et al. Spectral prediction and control of blast vibrations during the excavation of high dam abutment slopes with millisecond−delay blasting[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 116−124. doi: 10.1016/j.soildyn.2017.01.007
[2] YANG J, LU W, JIANG Q. et al. Frequency comparison of blast−induced vibration per delay for the full face millisecond delay blasting in underground opening excavation[J]. Tunnelling and Underground Space Technology, 2016, 51: 189−201. doi: 10.1016/j.tust.2015.10.036
[3] 杨立云, 董鹏翔, 王启睿, 等. 爆生气体驱动双共线Ⅰ型裂纹的扩展行为[J]. 矿业科学学报, 2023, 8(4): 538−547.
YANG L Y, DONG P X, WANG Q R, et al. Propagation behavior of two collinear mode Ⅰ cracks driven by explosive gas[J]. Journal of Mining Science and Technology, 2023, 8(4): 538−547.
[4] CUNNINGHAM, C. V. B. The Kuz−Ram fragmentation model – 20 years on[C]//R Holmberg. Brighton conference proceedings. St. Julians: EFEE, 2005: 202–210.
[5] ELORANTA J, PALANGIO T, PALANGIO T C, et al. Size matters on the Mesabi Range[C]//Proceedings of the 3rd Annual Conference of ISEE on Explosives and Blasting Technique. Nashville: TN, 2007: 387–398.
[6] 吴钦正, 李润然, 李桂林, 等. 基于JKSimBlast软件的露天矿爆破毫秒延期时间优化[J]. 黄金科学技术, 2021, 29(6): 854−862. doi: 10.11872/j.issn.1005-2518.2021.06.066
WU Q Z, LI R F, LI G L, et al. Optimization of millisecond delay time of open−pit mine blasting based on JKSimBlast software[J]. Gold Science and Technology, 2021, 29(6): 854−862. doi: 10.11872/j.issn.1005-2518.2021.06.066
[7] SHAIB ABDULAZEEZ SHEHU, KUDIRAT OZIOHU YUSUF, M H M HASHIM. Comparative study of WipFrag image analysis and Kuz−Ram empirical model in granite aggregate quarry and their application for blast fragmentation rating[J]. Geomechanics and Geoengineering 2022,17(1): 197−205.
[8] 刘翔宇, 龚敏, 杨仁树, 等. 隧道周边孔毫秒延时爆破围岩损伤数值分析研究[J]. 振动与冲击, 2023, 42(24): 9−15.
LIU X Y, GONG M, YANG R S, et al. Numerical analysis of surrounding rock damage caused by millisecond delay blasting in tunnel surrounding holes[J].Vibration and impact, 2023, 42 (24): 9−15.
[9] 李清, 于强, 张迪, 等. 地铁隧道精确控制爆破延期时间优选及应用[J]. 振动与冲击, 2018, 37(13): 135−140+170.
LI Q, YU Q, ZHANG D, et al. Optimization and application of precise control blasting delay time for subway tunnels[J]. Vibration and Impact, 2018, 37 ( 13 ) : 135−140 + 170.
[10] 李顺波, 杨军, 李长军. 基于精确延时的基坑开挖爆破振动控制研究[J]. 爆破器材, 2015, 44(6): 9−14. doi: 10.3969/j.issn.1001-8352.2015.06.003
LI S B, YANG J, LI C J. Study on blasting vibration control of foundation pit excavation based on accurate delay[J]. Blasting Equipment, 2015, 44(6): 9−14. doi: 10.3969/j.issn.1001-8352.2015.06.003
[11] DING J, CAO H, JIANG N, et al. Numerical optimization and field test of smooth blasting parameters for diversion tunnel[J]. Safety and Environmental Engineering, 2023, 30(5): 46−53.
[12] 兰小平. 数码电子雷管逐孔起爆网路延时时间应用探讨[J]. 工程爆破, 2019, 25(2): 57−66. doi: 10.3969/j.issn.1006-7051.2019.02.010
LAN X P. Application of delay time of digital electronic detonator hole−by−hole initiation network[J]. Engineering Blasting, 2019, 25(2): 57−66. doi: 10.3969/j.issn.1006-7051.2019.02.010
[13] 高腾飞, 张智宇, 王鑫尧, 等. 城镇浅孔爆破逐孔起爆合理延时的研究[J]. 爆破, 2016, 33(1): 78−83.
GAO T F, ZHANG Z Y, WANG X Y , et al. Study on reasonable delay of hole−by−hole blasting in urban shallow hole blasting[J]. Blasting, 2016, 33(1): 78−83.
[14] 李祥龙, 张其虎, 王建国, 等. 地下爆破精确延时逐孔起爆减振试验研究[J]. 黄金科学技术, 2021, 29(3): 401−410.
LI X L, ZHANG Q H, WANG J G, et al. Experimental study on vibration reduction by precise delay hole−by−hole initiation of underground blasting[J]. Golden Science and Technology, 2021, 29(3): 401−410.
[15] 王宇涛. 基于RHT本构的岩体爆破破碎模型研究[D]. 北京: 中国矿业大学(北京), 2015.
WANG Y T. Study on rock mass blasting fragmentation model based on RHT constitutive[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
[16] WANG H C, WANG Z L, WANG J G, et al. Effect of confining pressure on damage accumulation of rock under repeated blast loading[J]. International Journal of Impact Engineering, 2021, 156: 103961. doi: 10.1016/j.ijimpeng.2021.103961
[17] RIEDEL W, KAWAI N, KONDO K I. Numerical assessment for impact strength measurements in concrete materials[J]. International Journal of Impact Engineering, 2009, 36(2): 283−293. doi: 10.1016/j.ijimpeng.2007.12.012
[18] M. M. DEHGHAN BANADAKI, B. Mohanty. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 40/41: 16−25.
-