Effect of Delay Time on Attenuation Law of Blasting Vibration in Hole−by−hole Presplitting
-
摘要:
为了获得逐孔预裂爆破的最优延期时间,基于Ansys/LS−Dyna有限元软件,结合现场实验研究了不同延期时间下逐孔预裂爆破的振动衰减规律,为实际工程应用提供了理论依据。结果表明:与齐发起爆相比,逐孔起爆可以有效地降低质点峰值振动速度(PPV),特别是预裂沟附近区域;随着延期时间的增大,萨道夫斯基公式的K值逐渐减小,而α值变化不大,当延期时间大于0.6T(T为单孔爆破振动持续时间)时,K与α的值趋于稳定,接近于单孔爆破;校正系数β与延期时间成反比,最优延期时间应为0.6T~1.0T;逐孔预裂成缝后对主爆区的减振率大于齐发预裂爆破。
Abstract:To obtain the optimal delay time of hole−by−hole pre−splitting blasting, based on Ansys / LS−Dyna finite element software, combined with field experiments, this paper studies the vibration attenuation law of hole−by−hole pre−splitting blasting under different delay time, which provides a theoretical basis for practical engineering application. The results showed that compared with the simultaneous initiation, the hole−by−hole initiation effectively reduced the peak particle vibration velocity (PPV), especially in the area near the pre−split trench. As the delay time increased, the K value of the Sadaovsk formula gradually decreased, while the α value did not change much. When the delay time was greater than 0.6T (T was the duration of single−hole blasting vibration), the values of K and α tended to be stable and close to single−hole blasting. The correction coefficient β was inversely proportional to the delay time, and the optimal delay time should be 0.6 T~1.0 T; the vibration reduction rate of the main blasting area after hole−by−hole pre−splitting was greater than that of the simultaneous pre−splitting blasting.
-
Key words:
- pre−splitting blasting /
- hole−by−hole blasting /
- delay time /
- blasting vibration /
- numerical simulation
-
-
表 1 岩石材料及状态方程参数
Table 1. Rock material and equation of state parameters
参数名称 数值 参数名称 数值 密度R0/(g·cm−3) 2.6 损伤参数EFmin 0.01 单轴抗压强度fc/MPa 154 压力参数Pcrush/MPa 51 单轴抗拉强度T/MPa 12.2 压力参数μcrush 0.00162 剪切模量G/GPa 28.7 压力参数Plock/GPa 1.2 强度参数A 0.28 压力参数μlock 0.012 强度参数B 2.5 压力参数K1/GPa 12 强度参数C 0.00186 压力参数K2/GPa 25 强度参数N 0.79 压力参数K3/GPa 42 强度参数Smax 5.0 软件参数 1.0000×10−11 损伤参数D1 0.04 软件参数FS 0.035 损伤参数D2 1.0 表 2 炸药材料及状态方程参数
Table 2. Explosive materials and state equation parameters
参数名称 数值 参数名称 数值 密度ρ/(g·cm−3) 1.3 炸药常数ω 0.15 爆速D/(m·s−1) 4500 炸药常数R1 4.2 爆轰压力Pj/GPa 9.53 炸药常数R2 0.9 炸药常数A/GPa 214.4 初始体积内能E0/(GJ·m−3) 3.87 炸药常数B/GPa 0.182 相对体积V0 1.0 表 3 空气状态方程参数
Table 3. Air state equation parameters
参数名称 数值 参数名称 数值 密度ρ/(kg·m−3) 1.29 常量C4 0.4 常量C0/MPa −1×10−6 常量C5 0.4 常量C1 0.0 常量C6 0.0 常量C2 0.0 单位体积内能E0/(MJ·m−3) 2.5×10−6 常量C3 0.0 相对体积V0 1.0 表 4 炸药材料及状态方程参数
Table 4. Explosive materials and state equation parameters
ρ/(g·cm−3) D/(m·s−1) A/GPa B/GPa R1 R2 ω 1.3 4500 214.4 0.182 4.2 0.9 0.15 表 5 水平径向PPV拟合公式
Table 5. Horizontal radial PPV fitting formula
延期时间 公式 单孔 Δt=0 ms Δt=1 ms Δt=3 ms Δt=6 ms Δt=10 ms 表 6 主爆区爆破参数
Table 6. Blasting parameters of main blasting area
序号 技术名称 单位 数量 备注 1 钻孔直径 mm 140 2 底盘抵抗线 m 4 3 工作台阶高度 m 10 4 孔间距 m 4 5 孔排距 m 4 6 超深 m 2 7 钻孔深度 m 10 8 布孔方式 梅花形 9 钻孔角度 ° 90 垂直孔 10 钻孔排数 排 4 11 装药结构 连续装药 12 线装药密度 kg/m 10.1 13 总孔深 m 1400 14 孔口充填高度 m >3.0 15 平均单孔装药量 kg/孔 56.9 16 总孔数 个 130 表 7 预裂爆破区域爆破参数
Table 7. Blasting parameters of pre−splitting blasting area
序号 参数名称 单位 数值 备注 1 预裂孔孔径 mm 115 2 不耦合系数 3.59 3 孔距 m 1.2 4 孔深 m 10 5 超深 m 2 6 总孔深 m 12 7 钻孔角度 ° 90 8 填塞长度 m 3 9 线装药密度 kg/m 0.9 10 单孔装药量 kg 9 2卷Φ90+24卷Φ32 11 装药结构 线性连续装药 12 总孔数 20 10个齐发预裂孔,
10个逐孔预裂孔表 8 测振仪所测PPV数据
Table 8. Data measured by vibrometer
/(cm·s−1) 测点方向 1号测点 2号测点 3号测点 4号测点 5号测点 X 3.28 0.91 0.43 0.28 0.15 Y 3.73 1.78 0.67 0.40 0.28 Z 7.33 1.57 0.78 0.49 0.34 表 9 1号和5号数据对比
Table 9. Comparison of No.1 and No.5 data
测点 方向 爆心距/m 计算爆破振动
/(cm·s−1)实测爆破振动
/(cm·s−1)减振率
/%1号 X 14 16.45 12.145 26 Y 14 14.58 13.409 8 Z 14 15.5 15.010 3 5号 X 14 16.45 5.772 65 Y 14 14.58 3.168 78 Z 14 15.5 8.636 44 -
[1] 尹忠昌, 宋俊生, 胡少银, 等. 坚硬顶板切缝药包深孔预裂松动爆破技术研究[J]. 矿业科学学报, 2021, 6(6): 696−702.
YIN Z C, SONG J S, HU S Y, et al. Research on deep hole pre−splitting loosening blasting technology of hard roof cutting seam chargepack[J]. Journal of Mining Science and Technology, 2021, 6(6): 696−702.
[2] 解嘉豪, 韩刚, 孙凯, 等. 邻空巷坚硬顶板预裂爆破防冲机理及效果检验[J]. 煤炭学报, 2023, 48(5): 2078−2091.
XIE J H, HAN G, SUN K, et al. Rockburst prevention mechanism and effect test of blast presplitting of hard roof in gob−side roadway[J]. Journal of China Coal Society, 2023, 48(5): 2078−2091.
[3] 郑超, 黄原明, 赵艳伟, 等. 大红山铜矿点柱预裂爆破损伤控制[J]. 有色金属工程, 2024, 14(5): 104−112.
ZHENG C, HUANG Y M, ZHAO Y W, et al. Damage control of point pillar presplitting blasting in dahongshan copper mine[J]. Nonferrous Metals Engineering, 2024, 14(5): 104−112.
[4] 顾毅成. 从光面(预裂)爆破的应用谈爆破技术的进步与发展[J]. 铁道工程学报, 2010, 27(1): 77−81. doi: 10.3969/j.issn.1006-2106.2010.01.017
GU Y C. Comments on the progress and development of blasting technology from application of smooth (presplitting) blasting[J]. Journal of Railway Engineering Society, 2010, 27(1): 77−81. doi: 10.3969/j.issn.1006-2106.2010.01.017
[5] 高启栋, 张宸, 范勇, 等. 坝基缓坡预裂开挖中不同布孔方式下的爆破扰动比较分析[J]. 岩土工程学报, 2024, 46(5): 1018−1029. doi: 10.11779/CJGE20230110
GAO Q D, ZHANG C, FAN Y, et al. Comparation and analysis of blasting disturbance under different hole arrangement in presplitting excavation of dam foundation gentle slope[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1018−1029. doi: 10.11779/CJGE20230110
[6] S DIDONATO N N HERSCHKOWITZ U N WIESMANN. Effect of chloroquine on cultured fibroblasts: release of lysosomal hydrolases and inhibition of their uptake[J]. Biochemical and Biophysical Research Communications, 1975, 66(4): 1338−1343. doi: 10.1016/0006-291X(75)90506-9
[7] ZHU R G, CHENG K, LU W X. A new method of fracture blast by time−order−ignition[J]. Journal of Wuhan University of Technology, 1993, 1(1): 40−46.
[8] 吴钦正, 李润然, 李桂林, 等. 基于JKSimBlast软件的露天矿爆破毫秒延期时间优化[J]. 黄金科学技术, 2021, 29(6): 854−862. doi: 10.11872/j.issn.1005-2518.2021.06.066
WU Q Z, LI R R, LI G L, et al. Optimization of millisecond delay blasting time in open pit mine based on JKSimBlast software[J]. Gold Science and Technology, 2021, 29(6): 854−862. doi: 10.11872/j.issn.1005-2518.2021.06.066
[9] 李清, 于强, 张迪, 等. 地铁隧道精确控制爆破延期时间优选及应用[J]. 振动与冲击, 2018, 37(13): 135−140+170.
LI Q, YU Q, ZHANG D, et al. Metro tunnel precisely controlled blasting’s delay time optimization and its application[J]. Journal of Vibration And Shock, 2018, 37(13): 135−140+170.
[10] 李顺波, 杨军, 李长军. 基于精确延时的基坑开挖爆破振动控制研究[J]. 爆破器材, 2015, 44(6): 9−14. doi: 10.3969/j.issn.1001-8352.2015.06.003
LI S B, YANG J, LI C J. Control of blasting vibration in foundation pit excavation based on the precise time delay[J]. Blasting Materials, 2015, 44(6): 9−14. doi: 10.3969/j.issn.1001-8352.2015.06.003
[11] 丁家仁, 曹华彰, 蒋楠, 等. 引水隧洞光面爆破参数优化数值模拟及现场试验研究[J]. 安全与环境工程, 2023, 30(5): 46−53.
DING J R, CAO H Z, JIANG N, et al. Numerical optimization and field test of smooth blasting parameters for diversion tunnel[J]. Safety and Environmental Engineering, 2023, 30(5): 46−53.
[12] 兰小平. 数码电子雷管逐孔起爆网路延时时间应用探讨[J]. 工程爆破, 2019, 25(2): 57−66. doi: 10.3969/j.issn.1006-7051.2019.02.010
LAN X P. Discussion on application of delay time in hole −by−hole initiation network of digital electronic detonators[J]. Engineering Blasting, 2019, 25(2): 57−66. doi: 10.3969/j.issn.1006-7051.2019.02.010
[13] 高腾飞, 张智宇, 王鑫尧, 等. 城镇浅孔爆破逐孔起爆合理延时的研究[J]. 爆破, 2016, 33(1): 78−83. doi: 10.3963/j.issn.1001-487X.2016.01.015
GAO T F, ZHANG Z Y, WANG X Y, et al. Study on reasonable interval time of hole−by−hole initiation in town short−hole blasting[J]. Blasting, 2016, 33(1): 78−83. doi: 10.3963/j.issn.1001-487X.2016.01.015
[14] 李祥龙, 张其虎, 王建国, 等. 地下爆破精确延时逐孔起爆减振试验研究[J]. 黄金科学技术, 2021, 29(3): 401−410.
LI X L, ZHANG Q H, WANG J G, et al. Experimental study on precise delay hole−by−hole blasting vibration reduction of underground blasting[J]. Gold Science and Technology, 2021, 29(3): 401−410.
[15] 叶海旺, 唐可, 万涛, 等. 时序控制预裂爆破参数优化及应用[J]. 爆炸与冲击, 2017, 37(3): 502−509.
YE H W, TANG K, WAN T, et al. Optimization of time sequence controlled pre−splitting blasting parameters and its application[J]. Explosion and Shock Waves, 2017, 37(3): 502−509.
[16] 陈啸林, 张智宇, 王凯, 等. 某露天矿山预裂爆破参数优选与试验研究[J]. 高压物理学报, 2023, 37(6): 181−194.
CHEN X L, ZHANG Z Y, WANG K, et al. Optimization and experimental study of pre−splitting blasting parameters in a certain open−pit mine[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 181−194.
[17] F J BARRANTES D MARSH. Immobilized lipid in acetylcholine receptor−rich membranes from Torpedo marmorata[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(9): 4329−4333.
[18] H. Z. YUE, C. YU, H. B. LI, et al. The effect of blast−hole arrangement, delay time, and decoupling charge on rock damage and vibration attenuation in multihole blasting[J]. Shock and Vibration, 2022, 2022: 1−18.
[19] 梁瑞, 王树江, 周文海, 等. 基于回归分析的边坡爆破振速高程效应研究[J]. 有色金属工程, 2020, 10(2): 107−115.
LIANG R, WANG S J, ZHOU W H, et al, Research on elevation effect of slope blasting vibration based on regression analysis[J]. Nonferrous Metals Engineering, 2020, 10(2): 107−115.
[20] 付晓强, 麻岩, 俞缙, 等. 隧道爆破振动信号时频谱增强优化分析[J]. 矿业科学学报, 2023, 8(3): 348−356.
FU X Q, MA Y, YU J, et al. Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal[J]. Journal of Mining Science and Technology, 2023, 8(3): 348−356.
-