Analysis of Blasting Charge Structure and Vibration Law of Stope Near Cemented Filling Body
-
摘要:
在采用空场嗣后充填法开采矿石过程中,为降低Ⅱ步骤回采矿房爆破落矿时,爆破冲击作用对Ⅰ步骤回采后进行胶结充填的矿柱造成的损伤,通过数值模拟方法,分析了不同厚度预留矿柱下空气间隔装药及砂石间隔装药两种装药结构在爆破过程中对临近胶结充填体的损伤情况。研究结果表明,两种装药结构在爆破过程中对紧邻胶结充填体侧的保留矿体的损伤范围及胶结充填体内损伤,随保留矿体厚度的变化情况基本一致。但与砂石间隔装药结构相比,空气间隔装药结构在粉碎区耗能较低,更多能量集中于裂隙区,炸药能量分布更均衡,破岩效能更优。此外,通过现场监测爆破振动数据,结合萨道夫斯基爆破振动衰减公式,对振动监测数据进行多元线性回归。得到爆破振动在充填体中X、Y、Z三个方向衰减系数分别为2.31、1.76、2.08,且回归曲线线性相关关系强,符合矿山实际,相关衰减系数可作为控制爆破过程中最大单响药量的理论依据。研究结论为井下回采爆破参数选择提供了理论依据,对井下安全开采具有一定指导意义。
Abstract:In the process of mining with open stoping subsequent filling method, in order to reduce the damage caused by blasting impact during blasting and ore falling in the second step back mining room to the pillar of cemented filling after mining in the first step. Through the LS−DYNA software analyze the damage of two charge structures of air interval charge and sand−gravel interval charge to the adjacent cemented filling body during the blasting process under different reserved pillar thicknesses. The research results showed that the damage range of the retained ore body adjacent to the side of the cemented filling body and the change of the damage in the cemented filling body with the thickness of the retained ore body during the blasting process of the two charging structures were basically the same. However, compared with the sand−gravel interval charge structure, the air interval charge structure had lower energy consumption in the crushing zone, more energy was concentrated in the fracture zone, the explosive energy distribution was more balanced, and the rock breaking efficiency was better. In addition, throught the on−site monitoring of blasting vibration data, combined with the Sadov's formula for blasting vibration attenuation, the vibration monitoring data were subjected to multiple linear regression.The attenuation coefficients of blasting vibration in the X、Y、and Z directions of the filling body were 2.31, 1.76, and 2.08, respectively, and the regression curve had a strong linear correlation, which was in line with the actual situation of the mine, the relevant attenuation coefficient could be used as the theoretical basis for controlling the maximum single−shot charge in the blasting process.The research conclusion provides a theoretical basis for the selection of blasting parameters in underground mining, and has certain guiding significance for safe underground mining.
-
Key words:
- cemented filling body /
- numerical simulation /
- charge structure /
- blasting vibration
-
-
表 1 充填体力学参数
Table 1. Filling body mechanical parameters
配比 强度参数 变形参数 水泥添加量
/(kg·m−3)质量
分数/%尾砂添加
/(kg·m−3)水添加量
/(kg·m−3)内聚力
/MPa抗压强度
/MPa抗拉强度
/MPa体积模
量/MPa剪切模量
/MPa150 72 1217 532 0.2 1.02 0.15 218.44 92.48 160 72 1207 532 0.22 1.14 0.17 224.2 96.11 170 72 1197 532 0.25 1.26 0.19 229.84 99.75 180 72 1188 532 0.27 1.39 0.21 235.36 103.4 表 2 矿岩参数
Table 2. Ore−rock parameters
岩石类型 抗压强度/MPa 抗拉强度/MPa 剪切强度 弹性模量/GPa 泊松比 内聚力/MPa 内摩擦角/(°) 矿体 72.7 5.1 8.4 45°47′ 86.8 0.26 底板岩石 62.5 5.1 11.1 49°15′ 100.7 0.25 表 3 矿岩RHT本构参数
Table 3. RHT constitutive parameters of ore−rock
参数名称 数值 参数名称 数值 材料初始密度ρ0/(g·cm−3) 2.90 残余应力强度参数Af 1.192 材料初始孔隙度a0 1.013 残余应力强度参数nf 0.567 孔隙压实时的压力 Pc0/GPa 6.0 孔隙开始压碎的压力 Pe1/MPa 24.560 孔隙度指数n 2.245 Hugoniot多项式系数A1/GPa 31.799 单轴抗压强度fc/MPa 72.7 Hugoniot多项式系数A2/GPa 67.732 拉压强度比 0.0679 Hugoniot多项式系数A3/GPa 66.386 剪压强度比 0.339 状态方程参数B0 2.13 剪切模量G/GPa 24.331 状态方程参数B1 2.13 压缩屈服面参数 0.834 状态方程参数 T1/GPa 31.799 拉伸屈服面参数 0.672 压缩应变率指数 βc/MPa 0.0166 失效面参数A 2.633 拉伸应变率指数βt/MPa 0.0214 失效面指数 N 0.519 参考压缩应变率 =30×10−6 s−1
初始拉压子午比参数 Q0 0.6805 参考拉伸应变率 =3×10−6 s−1
lode角相关系数B 0.0105 失效压缩应变率 =3×1025 s−1
剪切模量缩减系数ζ 0.539 失效拉伸应变率 =3×1025 s−1
损伤参数D1 0.04 状态方程参数T2 0 最小等效塑性应变 0.00387 损伤参数D2 1 表 4 充填体RHT本构参数
Table 4. RHT constitutive parameters of filling body
参数名称 数值 参数名称 数值 材料初始密度ρ0/(g·cm−3) 1.899 残余应力强度参数Af 1.78 材料初始孔隙度a0 1.035 残余应力强度参数nf 0.82 孔隙压实时的压力 Pc0/GPa 6.0 孔隙开始压碎的压力 Pe1/MPa 1.45 孔隙度指数n 3.1 Hugoniot多项式系数A1/GPa 4.12 单轴抗压强度fc/MPa 1.02 Hugoniot多项式系数A2/GPa 5.03 拉压强度比 0.061 Hugoniot多项式系数A3/GPa 1.06 剪压强度比 0.15 状态方程参数B0 1.22 剪切模量G/GPa 0.092 状态方程参数B1 1.22 压缩屈服面参数 0.53 状态方程参数 T1/GPa 0.0412 拉伸屈服面参数 0.7 压缩应变率指数 βc/MPa 0.154 失效面参数A 2.643 拉伸应变率指数βt/MPa 0.091 失效面指数 N 0.668 参考压缩应变率 =30×10−6 s−1
初始拉压子午比参数 Q0 0.6805 参考拉伸应变率 =3×10−6 s−1
lode角相关系数B 0.0105 失效压缩应变率 =3×1025 s−1
剪切模量缩减系数ζ 0.5 失效拉伸应变率 =3×1025 s−1
损伤参数D1 0.04 状态方程参数T2 0 最小等效塑性应变 0.01 损伤参数D2 1 表 5 炸药模型材料参数
Table 5. Explosive model material parameters
ρe/(kg·m−3) D/(m·s−1) PC−J/GPa V A/GPa B/GPa R1 R2 W E0/GPa 1.1×103 4.5×103 4.6 1.0 62.5 2.32 3.6 1.6 0.41 3.14 表 6 空气模型材料参数
Table 6. Air model material parameters
ρa/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 E0/(kJ·m−3) V0 1.29 0 0 0 0 0.4 0.4 0 250 1 表 7 振动监测数据
Table 7. Vibration monitoring data
测点位置 总药量/kg 最大单响药量/kg 爆心距/m 速度/(cm·s−1) 切向(X) 径向(Y) 垂向(Z) 1# 3864 1178.4 28.57675 21.726 20.467 19.878 2# 3864 1178.4 29.48362 19.347 18.357 18.676 3# 3864 1178.4 31.34022 17.258 17.516 16.478 4# 3864 1178.4 34.13472 15.932 16.179 15.652 5# 3864 1178.4 36.26151 11.584 12.549 11.319 -
[1] 周楠, 许健飞, 张吉雄, 等. 充填弱化坚硬覆岩冲击地压灾害机制研究[J]. 岩石力学与工程 学报, 2023, 42(10): 2412−2426.
ZHOU N, XU J F, ZHANG J X, et al. Study on the weakening mechanism of hard overburden rock burst disaster by backfilling[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(10): 2412−2426.
[2] 杨胜利, 李杨, 王兆会, 等. 充填体支撑作用下坚硬顶板运动模式与控制方法[J]. 采矿与安全工程学报, 2023, 40(5): 1057−1066.
YANG S L, LI Y, WANG Z H, et al. Hard roof movement characteristic and its control methods under supporting effect of the backfilling body[J]. Journal of Mining Safety Engineering, 2023, 40(5): 1057−1066.
[3] 张钦礼, 张雁峰, 安述庚, 等. 充填体相邻采场低扰动爆破参数优化及应用[J]. 爆破, 2022, 39(4): 53−61.
ZHNAG Q L, ZHANG Y F, AN S G, et al. Optimization and application of low disturbance blasting parameters in stopes adjacent to backfill[J]. Blasting, 2022, 39(4): 53−61.
[4] 陈典, 陈永贵, 叶为民, 等. 爆破振动荷载作用下填埋场稳定性计算分析[J]. 岩土工程学报, 2024, 46(5): 1067−1076.
CHEN D, CHEN Y G, YE W M, et al. Calculation and analysis of stability of landfills under blasting vibration loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1067−1076.
[5] 邱泓杰, 邱贤阳, 张舒, 等. 爆破动载下锯齿状岩−充界面胶结充填体损伤规律研究[J/OL]. 煤炭学报, 1−14[2024−07−14]. https://doi.org/10.13225/j.cnki.jccs.2023.1635.
QIU H J, QIU X Y, ZHANG S, et al. Study on the damage pattern of the cemented backfill at the jagged rock−fill interface under dynamic loading of blasting[J/OL]. Journal of China Coal Society, 1−14[2024−07−14]. https://doi.org/10.13225/j.cnki.jccs.2023.1635.
[6] 伍福寿, 张学民, 韩淼, 等. 近接既有隧道爆破激发地震波成分构成及特性研究[J]. 中南大学学报(自然科学版), 2024, 55(4): 1406−1417.
WU F S, ZHANG X M, HAN M, et al. Study on the components and characteristics of seismic waves induced by blasting in adjacent existing tunnel[J]. Journal of Central South University (Science and Technology), 2024, 55(4): 1406−1417.
[7] 朱红兵, 卢文波, 吴亮. 空气间隔装药爆破机理研究[J]. 岩土力学, 2007(5): 986−990.
ZHU H B, LU W B, WU L, Research on mechanism of air−decking technique in bench blasting[J]. Rock and Soil Mechanics, 2007(5): 986−990.
[8] 谢烽, 韩亮, 刘殿书, 等. 基于叠加原理的隧道爆破近区振动规律研究[J]. 振动与冲击, 2018, 37(2): 182−188.
XIE F, HAN L, LIU D S, et al. Vibration law analysis for a tunnel's field near blasting based on waveform superposition theory[J]. Journal of Vibration and Shock, 2018, 37(2): 182−188.
[9] 楼晓明, 王振昌, 陈必港, 等. 空气间隔装药孔壁初始冲击压力分析[J]. 煤炭学报, 2017, 42(11): 2875−2884.
LOU X M, WANG Z C, CHEN B G, et al. Initial shock pressure analysis for hole wall with air−decked charge[J]. Journal of China Coal Society, 2017, 42(11): 2875−2884.
[10] 李胜林, 韩昊轩, 李晨, 等. 台阶单孔爆破振动预测模型研究[J/OL]. 北京理工大学学报, 1−13[2024−07−14]. https://doi.org/10.15918/j.tbit1001−0645.2024.055.
LI S L, HAN H X, LI C, et al. A vibration prediction model of open step single hole blasting[J]. Transactions of Beijing Institute of Technology, 1−13[2024−07−14]. https://doi.org/10.15918/j.tbit1001−0645.2024.055.
[11] 吴振坤, 金爱兵, 陈帅军. 胶结充填体动力试验及其爆破响应模拟研究[J]. 金属矿山, 2020(7): 25−32.
WU Z K, JIN A B, CHEN S J, Study on cemented tailing backfill dynamic characteristics and its blasting response simulation[J]. Metal Mine, 2020(7): 25−32.
[12] 胡建华, 尚俊龙, 罗先伟, 等. 单孔爆破振动监测与衰减规律多元线性化回归[J]. 振动与冲击, 2013, 32(16): 49−53.
HU J H, SHANG J L, LUO X W, et al. Monitoring of single−hole blasting vibration and detection of its attenuation law by using multiple linear regression[J]. Journal of Vibration and Shock, 2013, 32(16): 49−53.
[13] 杨伟, 李国平, 李夕兵, 等. 爆破荷载下全尾砂胶结充填体破坏规律及防治措施[J]. 矿业研究与开发, 2018, 38(3): 113−118.
YANG W, LI G P, LI X B, et al. The failure rules and preventive measures of cemented full tailings filling body under blasting load[J]. Mining Research and Development, 2018, 38(3): 113−118.
[14] 刘杰, 卢文波, 王高辉, 等. 混凝土重力坝坝顶侵彻爆炸毁伤特征[J]. 武汉大学学报(工学版), 2023, 56(12): 1491−1500.
LIU J, LU W B, WANG G H, et al. Damage characteristics of concrete gravity dams crest subjected to penetration explosion[J]. Engineering Journal of Wuhan University, 2023, 56(12): 1491−1500.
[15] 罗宁, 柴亚博, 牟恭雨, 等. 深地页岩储层聚能射流侵彻及损伤致裂机理研究[J]. 金属矿山, 2024(5): 179−189.
LUO N, CHAI Y B, MOU G Y, et al. Study on the mechanism of charge jet penetration and damage induced cracking in deep shale reservoirs[J]. Metal Mine, 2024(5): 179−189.
[16] 赵勇. 爆破荷载下充填体动态响应及损伤控制技术[D]. 北京: 北京科技大学, 2023. DOI: 10.26945.
ZHAO Y. Dynamic response and damage control technology of filling body under blast loading[D]. Beijing: University of Science and Technology Beijing, 2023. DOI:10.26945.
[17] 聂铮玥. 三种典型岩石材料的RHT模型参数研究[D]. 长沙: 国防科技大学, 2021. DOI:10.27052.
NIE Z Y. Experimental study on RHT model parameters of three typical rock materials[D]. Changsha: National University of Defense Technology, 2021. DOI:10.27052.
[18] 陶子豪, 李祥龙, 胡启文, 等. 掏槽爆破成腔空孔效应数值模拟研究与分析[J/OL]. 兵工学报, 1−13[2024−07−14]. http: //kns. cnki. net/kcms/detail/11.2176. TJ. 20240527.0919. 002. html.
TAO Z H, LI X L, HU Q W, et al. Study and analysis on numerical simulation of cavity effect of cut blasting[J/OL]. Acta Armamentarii, 1−13[2024−07−14]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20240527.0919.002.html.
[19] 马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理[J]. 爆炸与冲击, 2023, 43(10): 152−173.
MA S Z, LIU K W, YANG J C, et al. Blast−induced damage characteristics and fracture mechanism of rock mass under initial stress[J]. Explosion and Shock Waves, 2023, 43(10): 152−173.
[20] 张硕彦, 蒋楠, 姚颖康, 等. 冻结砂岩冲击及爆破破岩能量耗散等效模型研究[J]. 岩石力学与工程学报, 2024, 43(5): 1255−1269.
ZHANG S Y, JIANG N, YAO Y K, et al. Equivalent modeling of energy dissipation in impact and rock blasting fragmentation of frozen sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(5): 1255−1269.
[21] 王亚琼, 杨御博, 高启栋, 等. 无中墙连拱隧道爆破振动响应特性及安全控制措施[J]. 中国公路学报, 2023, 36(11): 266−277.
WANG Y Q, YANG Y B, GAO Q D, et al. Study on blast vibration characteristics and safety control measures in the excavation of multi−arch tunnel without a middle wall[J]. China Journal of Highway and Transport, 2023, 36(11): 266−277.
[22] 施正宝, 郭灯, 曹阳, 等. 山区起伏地形条件下爆破振动传播规律研究[J]. 地下空间与工程学报, 2023, 19(S1): 308−313+322.
SHI Z B, GUO D, CAO Y, et al. Study on propagation law of blasting vibration under undulating terrain in mountainous area[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(S1): 308−313+322.
[23] 王建国, 陶子豪, 张智宇, 等. 一种爆破时最大单响药量的确定方法: CN202110246520.0[P]. 2022−05−06.
WANG J G, TAO Z H, ZHANG Z Y, et al. A method for determining the maximum single shot charge in blasting: CN202110246520.0[P]. 2022−05−06.
[24] 乔国栋, 刘泽功, 高魁, 等. 爆破载荷作用下高地应力巷道PPV衰减规律研究[J]. 振动与冲击, 2023, 42(23): 260−266+283.
QIAO G D, LIU Z G, GAO K, et al. Attenuation law of PPV in high crustal stress tunnels under blasting load[J]. Journal of Vibration and Shock, 2023, 42(23): 260−266+283.
-