Study on Failure Characteristics and Control Technology of Surrounding Rock in Deep Soft Rock Roadway of A Coal Mine
-
摘要:
深部矿产资源开发面临地应力大、巷道支护困难等问题。山西某煤矿−590 m水平运输平巷支护结构失效,巷道变形量大,对井下安全生产造成了较大的影响。针对原支护方案存在的问题,提出“锚网索一体化”支护思路,综合采用现场测试、数值模拟、工业实验等手段研究了巷道围岩破坏特征及控制技术。研究表明:(1)巷道围岩水平主应力较高,达到了39.08 MPa,是影响围岩稳定性的主要原因;(2)对不同支护方案巷道周边围岩应力场与塑性区分析表明,优化后支护方案垂直应力较原方案降低了 14%,塑性区范围缩小了 20%,“一体化”方案支护效果较好;(3)工业应用和锚杆(索)应力测试表明,当锚杆、锚索应力分别达到53.9 kN、389.12 kN时,较原方案提高了 14.6%和15.4%,受力效果较好,巷道变形在 30 d内控制在 200 mm内,较原方案下降了约 57%,实现了良好的支护效果。“一体化”支护形式可有效控制围岩变形,为类似地质条件的巷道支护提供参考。
-
关键词:
- 深部软岩巷道 /
- “锚网索一体化”支护 /
- 数值模拟 /
- 现场监测
Abstract:Deep mining faces problems such as high geostress and difficulties in tunnel support. The failure of the support structure of −590 m horizontal transport roadway in a coal mine in Shanxi Province leads to large deformation of roadway and has a great impact on underground safety production. Aiming at the problems existing in the original support scheme, this paper proposes the idea of “anchor net cable integration” support, and studies the destroy characteristics and control technology of roadway surrounding rock by means of field tests, numerical simulations and industrial experiments. The research showed that: (1) The horizontal principal stress of the surrounding rock of the roadway was higher, reaching 39.08 MPa, which was the main reason affecting the stability of the surrounding rock. (2) By analyzing the stress field and plastic zone of surrounding rock around roadway with different support schemes, the vertical stress of optimized support scheme was reduced by 14% compared with the original scheme, and the range of plastic zone was reduced by 20%. The support effect of “integrated” scheme was better. (3) Industrial application has been carried out. Through the stress test of anchor ropes (cables), when the stress of anchor ropes and cables reached 53.9 kN and 389.12 kN. Compared with the original plan, the increase was 14.6% and 15.4% respectively, and the stress effect was better. The deformation of the roadway was controlled within 200 mm within 30 days, which was about 57% lower than that of the original scheme, and good support effect was achieved. The “integrated” support form can effectively control the deformation of the surrounding rock, which is a roadway with similar geological conditions.
-
-
表 1 工作面煤层顶底板特征
Table 1. Characteristics of coal seam roof and floor
顶底板名称 岩石名称 厚度/m 岩性特征 老顶 细粒砂岩 4.00 浅灰色,层理不清 直接顶 砂质泥岩 2.40 深灰色,层理不清 伪顶 炭质泥岩 0.40 深灰色,松软 直接底 泥岩 1.60 灰色及灰褐色 老底 砂质泥岩 8.00 顶部含植物化石及
菱铁矿结核表 2 地应力测点数据
Table 2. Characteristics of coal seam roof and floor
测点 导孔深度 方位 仰角 岩性 −590 m运输巷 15.1 m 289° 22° 泥质砂岩 表 3 原岩应力测量结果
Table 3. Stress measurement results of primary rock
主应力/MPa 主应力方向及夹角/(°) 倾角(向下为正) 方位角 39.08 8.6 293.5 27.25 81.0 96.4 12.83 2.6 203.1 26.36 / / 表 4 岩石力学物理参数
Table 4. Physical parameters of rock mechanics
名称 密度/(kg·m−3) 体积模量/GPa 切变模量/GPa 抗拉强度/MPa 内聚力度/MPa 内摩擦角/(°) 粉砂质泥岩 2670 7.0 5.1 2.85 5.65 44.56 已16−17煤 1430 2.5 1.8 2.25 1.32 32.8 粉砂质泥岩 2675 6.8 5.1 2.84 5.63 44.35 泥岩 2600 5 2.3 2.77 3.17 47.85 已15煤 1435 2.7 1.9 0.78 1.19 32.50 粉砂质泥岩 2670 6.8 5.3 2.79 5.52 47.62 炭质泥岩 2625 5.4 3.3 2.57 4.27 42.1 粉砂岩 2740 8.7 7.5 3.05 3.42 38.24 中粒砂岩 2870 9.2 7.7 4.38 3.17 35.12 -
[1] 卢恒, 张传宝, 仵振华, 等. 综放工作面过空巷矿压显现规律及控制技术研究[J]. 采矿与岩层控制工程学报, 2022, 4(6): 47−59.
LU H, ZHANG C B, WU Z H, et al. Study on pressure development rule and control technology of overgored roadway in fully mechanized caving face[J]. Journal of Mining and Rock Control Engineering, 2022, 4(6): 47−59.
[2] 田正, 胡智星, 张重发, 等. 动载扰动下特厚煤层巷道破坏机理及其控制技术研究[J]. 煤炭技术, 2024, 43(3): 26−31.
TIAN Z, HU Z X, ZHANG C F, et al. Research on failure mechanism and control technology of roadway in extremely thick coal seam under dynamic load disturbance[J]. Coal Technology, 2024, 43(3): 26−31.
[3] 和刚, 王彬, 陈虎东. 煤矿开采沉陷预测模型的三维虚拟仿真[J]. 煤炭技术, 2022, 41(9): 49−52.
HE G, WANG B, CHEN H D. 3D virtual simulation of mine subsidence prediction model[J]. Coal Technology, 2022, 41(9): 49−52.
[4] SUN Y, LI G, ZHANG J, et al. Failure mechanisms of rheological coal roadway[J]. Sustainability, 2020, 12(7): 2885.
[5] 詹平, 孟海燕. 深部高应力巷道控制机理[J]. 煤, 2023, 32(12): 32−34+43. doi: 10.3969/j.issn.1005-2798.2023.12.008
ZHAN P, MENG H Y. Control mechanism of deep high stress roadway[J]. Coal, 2023, 32(12): 32−34+43. doi: 10.3969/j.issn.1005-2798.2023.12.008
[6] 孟庆彬, 宋子鸣, 刘滨, 等. 深部软岩巷道围岩与锚喷U型钢支护结构相互作用分析[J/OL]. 煤炭科学技术: 1−15[2024−01−06]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231102.1041.002.html.
MENG Q B, SONG Z M, LIU B, et al. Interaction analysis of deep soft rock roadway surrounding rock and bolt−shotcrete U−shaped steel supporting structure [J/OL]. Coal Science and Technology: 1−15[2024−01−06]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231102.1041.002.html.
[7] 单仁亮, 彭杨皓, 张炜卓, 等. 深部厚煤层沿底巷道两帮变形破坏机理研究[J]. 采矿与安全工程学报, 2023, 40(4): 730−742.
SHAN R L, PENG Y H, ZHANG W Z, et al. Study on deformation and failure mechanism of deep thick coal seam along two sides of roadway[J]. Journal of Mining and Safety Engineering, 2023, 40(4): 730−742.
[8] 张士科, 张庆伟, 茹忠亮. 基于FLAC3D的深部软岩回采巷道支护设计模拟分析[J]. 煤炭技术, 2016, 35(7): 12−14.
ZHANG S K, ZHANG Q W, RU Z L. Simulation analysis of support design of deep soft rock mining roadway based on FLAC3D[J]. Coal Technology, 2016, 35(7): 12−14.
[9] 任志成, 杨胜利, 孔德中. 深部巷道围岩变形与破坏特征[J]. 煤矿安全, 2014, 45(8): 224−227.
REN Z C, YANG S L, KONG D Z. Deformation and failure characteristics of deep roadway surrounding rock[J]. Safety in Coal Mine, 2014, 45(8): 224−227.
[10] 王会琼, 张元胤, 李克钢. 软岩巷道围岩变形及支护优化的3DEC分析[J]. 矿业研究与开发, 2018, 38(2): 40−43.
WANG H Q, ZHANG Y Y, LI K G. 3DEC analysis of surrounding rock deformation and support optimization of soft rock roadway[J]. Mining Research and Development, 2018, 38(2): 40−43.
[11] 李桐, 左宇军, 潘超, 等. 锦丰金矿深部巷道中空注浆锚杆支护参数优化研究[J]. 矿业研究与开发, 2023, 43(6): 97−102.
LI T, ZUO Y J, PAN C, et al. Research on optimization of supporting parameters of hollow grouting bolt in deep roadway of Jinfeng Gold Mine[J]. Mining Research and Development, 2023, 43(6): 97−102.
[12] 张剑, 李洪宾, 刘爱卿, 等. 深部采动影响区巷道围岩控制技术[J]. 煤炭工程, 2022, 54(11): 18−23.
ZHANG J, LI H B, LIU A Q, et al. Control technology of roadway surrounding rock in deep mining affected area[J]. Coal Engineering, 2022, 54(11): 18−23.
[13] 王卫军, 袁超, 余伟健, 等. 深部大变形巷道围岩稳定性控制方法研究[J]. 煤炭学报, 2016, 41(12): 2921−2931.
WANG W J, YUAN C, YU W J, et al. Research on stability control method of surrounding rock of deep roadway with large deformation[J]. Journal of China Coal Society, 2016, 41(12): 2921−2931.
[14] 张鑫, 刘泽功, 张健玉, 等. 深部高瓦斯煤层爆破致裂增透裂纹扩展规律研究[J/OL]. 煤炭科学技术: 1−14[2024−03−26]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240110.1453.002.html.
ZHANG X, LIU Z G, ZHANG J Y, et al. Study on Law of crack propagation induced by blasting in deep high gas coal seam[J/OL]. Coal Science and Technology: 1−14[2024−03−26]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240110.1453.002.html.
[15] 康红普, 高富强. 煤矿采动应力演化与围岩控制[J]. 岩石力学与工程学报, 2024, 43(1): 1−40.
KANG H P, GAO F Q. Evolution of mining stress and surrounding rock control in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 1−40.
[16] 秦松, 刘程, 罗靖. 松动圈理论及实测在岩性互层顶板矿井支护中的应用[J]. 煤炭技术, 2017, 36(9): 72−74.
QIN S, LIU C, LUO J. Application of loose circle theory and measurement in lithologic interbed roof mine support[J]. Coal Technology, 2017, 36(9): 72−74.
[17] 张继龙. 深井高应力破碎软岩巷道过断层支护技术研究[J]. 能源与环保, 2021, 43(4): 249−254.
ZHANG J L. Research on the support technology of soft rock roadway with high stress fracture in deep well[J]. Energy and Environmental Protection, 2021, 43(4): 249−254.
[18] 孙兴平, 陈建本, 孙涛, 等. 深井软岩高应力巷道过超大落差断层破碎带围岩控制技术[J]. 煤矿安全, 2023, 54(1): 117−124.
SUN X P, CHEN J B, SUN T, et al. Control technology of surrounding rock in fault fracture zone of deep soft rock high stress roadway with over large drop[J]. Safety in Coal Mine, 2023, 54(1): 117−124.
-