巴西劈裂下全尾砂胶结充填体抗拉强度特征研究

蔡发雄, 孙伟, 张盛友, 姜明归, 杨希, 黄锦周池, 景东. 巴西劈裂下全尾砂胶结充填体抗拉强度特征研究[J]. 矿产保护与利用, 2024, 44(4): 65-73. doi: 10.13779/j.cnki.issn1001-0076.2024.04.008
引用本文: 蔡发雄, 孙伟, 张盛友, 姜明归, 杨希, 黄锦周池, 景东. 巴西劈裂下全尾砂胶结充填体抗拉强度特征研究[J]. 矿产保护与利用, 2024, 44(4): 65-73. doi: 10.13779/j.cnki.issn1001-0076.2024.04.008
CAI Faxiong, SUN Wei, ZHANG Shengyou, JIANG Minggui, YANG Xi, HUANG Jinzhouchi, JING Dong. Study on Tensile Strength Characteristics of Cemented Backfill with Full Tailings under Brazilian Splitting[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 65-73. doi: 10.13779/j.cnki.issn1001-0076.2024.04.008
Citation: CAI Faxiong, SUN Wei, ZHANG Shengyou, JIANG Minggui, YANG Xi, HUANG Jinzhouchi, JING Dong. Study on Tensile Strength Characteristics of Cemented Backfill with Full Tailings under Brazilian Splitting[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 65-73. doi: 10.13779/j.cnki.issn1001-0076.2024.04.008

巴西劈裂下全尾砂胶结充填体抗拉强度特征研究

  • 基金项目: 国家自然科学基金项目(52474131);国家自然科学基金项目(42467022);云南省基础研究项目(202101BE070001−038、202201AT070146)
详细信息
    作者简介: 蔡发雄(1998—),男,云南鲁甸人,硕士研究生,主要从事充填采矿方面的研究工作,E-mail:758137175@qq.com; 孙伟,甘肃庆阳人,教授,博士生导师,昆明理工大学国土资源工程学院资源开发工程系主任,兼任中国有色金属学会第八届采矿学术委员会委员、中国(德国)研发创新联盟−碳中和与能源转型专业委员会委员等。长期从事金属矿充填理论与技术相关的教学科研工作,曾赴德国、赞比亚等国家从事访学、科研工作,在理论研究、方案设计、现场工业应用等方面开展了大量的研究工作。主持并参与了包括中国有色矿业集团、中国铝业、云南锡业、中国黄金集团、云南普朗铜矿等企业横向科研项目36余项,国家自然科学基金、国家重点研究研发计划等项目5项。发表学术论文60余篇,其中SCI/EI收录20余篇。获中国有色金属工业科学技术奖一等奖、中国黄金协会科学技术奖二等奖、昆明理工大学教学成果奖一等奖2项等奖励
    通讯作者: 孙伟(1982—),男,甘肃庆阳人,教授,博士生导师,主要从事绿色矿山、充填采矿方面的研究工作,E-mail:kmustsw@qq.com
  • 中图分类号: TD803;TD926.4

Study on Tensile Strength Characteristics of Cemented Backfill with Full Tailings under Brazilian Splitting

More Information
  • 研究充填体抗拉强度对维护采场稳定具有重大参考价值。充填体的破坏过程也是能量耗散的过程,养护龄期、分层数等因素直接影响充填体的强度大小及能量耗散。以全尾砂为骨料,制备一组质量浓度为78%,灰砂比分别为1∶4、1∶6、1∶8,养护龄期分别为3 d、7 d、14 d、28 d的胶结充填体进行巴西劈裂实验,分析了养护龄期与分层数对充填体强度、能量耗散及破坏规律的影响。结果表明:灰砂比一定时,不同分层的充填体的强度随养护龄期呈正相关关系;养护龄期一定时,强度与灰砂比呈正相关关系,分层会形成结构弱面,降低充填体强度。巴西劈裂过程中充填体的能量耗散随养护龄期的增长而增大,与强度变化特征一致;室内实验结果可以看出,充填体裂纹起裂点大多位于充填体中心点处,在破坏时主裂纹伴随无数微裂纹从中心点处开始萌生、扩展直至贯穿整个充填体,呈不规则形状向加载直径上扩散。不同分层充填体裂纹扩展较为连贯,部分充填体出现了分层界面局部错动的情况,断裂特征多为中心断裂与偏心断裂的复合式断裂。研究结果可为充填采矿设计、实际矿山充填提供理论支持。

  • 加载中
  • 图 1  尾砂粒级组成曲线

    Figure 1. 

    图 2  实验流程

    Figure 2. 

    图 3  巴西劈裂受力示意图

    Figure 3. 

    图 4  不同条件下充填体的应力−应变曲线

    Figure 4. 

    图 5  不同条件下充填体的弹性模量

    Figure 5. 

    图 6  抗拉强度拟合结果

    Figure 6. 

    图 7  充填体能量耗散特征

    Figure 7. 

    图 8  裂纹扩展情况

    Figure 8. 

    图 9  不同灰砂比充填体应力集中分布情况

    Figure 9. 

    表 1  尾砂化学成分

    Table 1.  Chemical composition of tailings

    成分 Cu As Ag S CaO MgO SiO2 Al2O3 Fe Bi K2O Ba
    含量 0.14 0.55 6.7 4.59 3.01 2.30 19.10 3.27 22.02 0.005 1.24 11.02
    注:除Ag含量单位为g/t外,余为%。
    下载: 导出CSV

    表 2  充填体抗拉强度结果

    Table 2.  Results of tensile strength of backfill body

    分层数灰砂比不同养护龄期下的充填体抗拉强度/MPa
    3 d7 d14 d28 d
    1∶40.1300.3840.5050.577
    1∶60.1060.2520.3730.441
    1∶80.0510.1770.2280.278
    1∶40.1230.3100.4030.508
    1∶60.0950.1990.3730.392
    1∶80.0370.1420.2280.238
    1∶40.1180.2260.3510.443
    1∶60.0610.1580.2890.350
    1∶80.0250.1320.1580.216
    下载: 导出CSV
  • [1]

    SARI M, YILMAZ E, KASAP T, et al. Exploring the link between ultrasonic and strength behavior of cementitious mine backfill by considering pore structure[J]. Constr. Build. Mater., 2023, 370: 130588.

    [2]

    SUN W, WANG H J, HOU K P. Control of waste rock−tailings paste backfill for active mining subsidence areas[J]. J. Clean. Prod., 2018, 171: 567−579. doi: 10.1016/j.jclepro.2017.9.253

    [3]

    CAO H, GAO Q, ZHANG X Z, et al. Research progress and development direction of filling cementing materials for filling mining in iron mines of china[J]. Gels, 2022, 3: 192.

    [4]

    SUN W, WU A X. HOU K P, et al. Real−time observation of meso−fracture process in backfill body during mine subsidence using X−ray CT under uniaxial compressive conditions[J]. Constr. Build. Mater., 2016, 113: 153–162.

    [5]

    侯永强, 尹升华, 曹永, 等. 单轴压缩下不同养护龄期尾砂胶结充填体损伤特性及能量耗散分析[J]. 中南大学学报(自然科学版), 2020, 51(7): 1955−1965.

    HOU Y Q, YIN S H, CAO Y, et al. Damage characteristics and energy dissipation analysis of tailings cemented backfill at different curing ages under uniaxial compression[J]. Journal of Central South University (Natural Science Edition), 2020, 51(7): 1955−1965.

    [6]

    GAO T, SUN W, LIU Z, et al. Investigation on fracture characteristics and failure pattern of inclined layered cemented tailings backfill[J]. Constr. Build. Mater., 2022, 343: 128110.

    [7]

    TANG Y N, FU J X, SONG W D, et al. Mechanical properties and crack evolution of interbedded cemented tailings backfill[J]. Chinese J. Eng., 2020, 42: 1286−1298.

    [8]

    WANG J, SONG W D, GAO S, et al. Mechanical properties and failure modes of stratified backfill under triaxial cyclic loading and unloading[J]. Int. J. Min. Sci. Technol., 2019, 29: 809−814.

    [9]

    SUN W, GAO T, ZHAO J G, et. al. Research on fracture behavior and reinforcement mechanism of fiber−reinforced locally layered backfill: Experiments and models[J]. Constr. Build. Mater., 2023, 366: 130186.

    [10]

    LIU X S, NING J G, Y. L. Tan, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading[J]. Int. J. Min. Sci. Technol., 2016, 85: 27−32.

    [11]

    刘志祥, 青灵, 党文刚. 尾砂胶结充填体损伤软−硬化本构模型[J]. 山东科技大学学报(自然科学版), 2012, 31(2): 36−41.

    LIU Z X, LIU Q L, DANG W G. On softening−hardening intrinsically constitutive model for damage of tailings−cemented filling body[J]. Journal of Shandong University of Science and Technology (Natural Science), 2012, 31(2): 36−41.

    [12]

    TAN Y L, GU Q H, NING J G, et al. Uniaxial compression behavior of cement mortar and its damage−constitutive model based on energy theory[J]. Materials, 2019: 1309. DOI: 10.3390/ma12081309.

    [13]

    JIAO H Z, YANG W B, SHRN H M, et al. Study on multi−layer filling treatment of extra−large goaf and its underground application[J]. Materials, 2022, 16: 5680.

    [14]

    SONG W D, WANG J, TAN Y Y, et al. Energy consumption and damage characteristics of layered filling under triaxial addition−unloading[J]. Int. J Min. Sci. Technol., 2017, 46(5): 1050−1057.

    [15]

    HAN B, ZHANG S Y, SUN W. Impact of temperature on the strength development of the tailing−waste rock backfill of a gold Mine[J]. Adv. Civ. Eng. Mater. 2019, 43: 79606.

    [16]

    SUN W, JIANG M G, FAN K, LIU Z. Determination and application of pressure loss in long distance pipeline transportation of paste slurry based on pipe loop experiment[J]. Arch. Min. Sci., 2022, 67: 223−237.

    [17]

    LU K F, SUN W, GAO T, et al. Preparation of new copper smelting slag−based mine backfill material and investigation of its mechanical properties[J]. Constr. Build. Mater., 2023, 382: 131228.

    [18]

    LI Z Y, SUN W, GAO T, et al. Experimental study on evolution of pore structure of inclined layered cemented tailings backfill based on X−ray CT[J]. Constr. Build. Mater., 2023, 366: 130242.

    [19]

    GAO T, SUN W, LI Z Y, et al. Study on shear characteristics and failure mechanism of inclined layered backfill in mining solid waste utilization[J]. Minerals, 2022, 12(12): 1540.

    [20]

    JIAO H Z, ZHANG W, YANG Y, et al. Static mechanical characteristics and meso−damage evolution characteristics of layered backfill under the condition of inclined interface[J]. Constr. Build. Mater., 2023, 366: 130113.

    [21]

    张辉, 程利兴, 苏承东, 等. 饱水煤样巴西劈裂强度和能量特征试验研究[J]. 中国安全生产科学技术, 2015, 11(12): 5−10.

    ZHANG H, CHENG L X, SU C D, et al. Experimental study on Brazilian splitting strength and energy characteristics of saturated coal samples[J]. China Science and Technology of production Safety, 2015, 11(12): 5−10.

    [22]

    王辉, 李勇, 曹树刚, 等. 基于巴西劈裂实验的层状页岩断裂特征试验研究[J]. 采矿与安全工程学报, 2020, 37(3): 604−612.

    WANG H, LI Y, Cao S G, et al. Experimental study on fracture characteristics of layered shale based on Brazilian splitting test[J]. Journal of Mining and Safety Engineering, 2020, 37(3): 604−612.

    [23]

    TAN X, KONIETZKY H, FRÜ HWIRT T, et al. Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1341−1351. doi: 10.1007/s00603-014-0629-2

    [24]

    肖福坤, 于涵, 侯志远, 等. 砂岩巴西劈裂破坏的位移场演化及能量耗散特征[J]. 黑龙江科技大学学报, 2018, 28(2): 125−129.

    XIAO F K, YU H, HOU Z Y, et al. Displacement field evolution and energy dissipation characteristics of sandstone splitting failure in Brazil [J]. Journal of Heilongjiang University of Science and Technology, 2018, 28 (2): 125−129.

    [25]

    谢凯楠, 姜德义, 蒋翔, 等. 页岩巴西劈裂试验的能量分布与临界特征分析[J]. 煤炭学报, 2017, 42(3): 613−620.

    XIE K N, JIANG D Y, JIANG X, et al. Analysis of energy distribution and critical characteristics of shale splitting test in Brazil[J]. Journal of Coal Industry, 2017, 42(3): 613−620.

    [26]

    杜坤, 李地元, 金解放. 充填体与岩体能量和强度匹配的分析及应用[J]. 中国安全科学学报, 2011, 21(12): 82−87. doi: 10.3969/j.issn.1003-3033.2011.12.012

    DU K, LI D Y, JIN J F. Matching analysis of energy and strength between backfill and rock mass and its application[J]. China Safety Science Journal, 2011, 21(12): 82−87. doi: 10.3969/j.issn.1003-3033.2011.12.012

    [27]

    刘志祥, 李夕兵, 赵国彦, 等. 充填体与岩体三维能量耗损规律及合理匹配[J]. 岩石力学与工程学报, 2010, 29(2): 344−348.

    LIU Z X, LI X B, ZHAO G Y, et al. Three−dimensional energy dissipation laws and reasonable matches between backfill and rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2010. 29(2): 344−348.

    [28]

    DENG J, LI B, LI X B. et al. Analysis of factors and countermeasures of mining subsidence in Kaiyang Phosphorus Mine[J]. J Cent. South Univ. Technol., 2006, 13: 733–737.

    [29]

    SONG X P, LI J B, WANG S, et al. Study of mechanical behavior and cracking mechanism of prefabricated fracture cemented paste backfill under different loading rates from the perspective of energy evolution[J]. Constr. Build. Mater., 2022, 361: 129737.

    [30]

    QI W Y, ZHANG J X, ZHOU N, et al. Mechanism by which backfill body reduces amount of energy released in deep coal mining[J]. Shock and Vibration, 2019, 14: 8253269.

    [31]

    LIU L, XIN J, QI C C, KI−IL SONG, et al. Experimental investigation of mechanical, hydration, microstructure and electrical properties of cemented paste backfill[J]. Constr. Build. Mater., 2020, 263: 120137.

    [32]

    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003−3010.

    XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003−3010.

    [33]

    XIAO S, WANG H L, LIU B, et al. The surface−forming energy release rate based fracture criterion for elastic–plastic crack propagation[J]. J. Mech. Phys. Solids., 2015, 84: 336−357.

    [34]

    彭瑞东, 谢和平, 鞠杨. 砂岩拉伸过程中的能量耗散与损伤演化分析[J]. 岩石力学与工程学报, 2007, 26(12): 2526−2531. doi: 10.3321/j.issn:1000-6915.2007.12.019

    PENG R D, XIE H P, JU Y. Analysis of energy. dissipation and damage evolution of sandstone during tensile process[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2526−2531. doi: 10.3321/j.issn:1000-6915.2007.12.019

    [35]

    T NISHIOKA, S SYANO, T FUJIMOTO. Concepts of separated j-integrals, separated energy release rates, and the component separation method of the J-integral for interfacial fracture mechanics[J]. J. Appl. Mech., 2003, 70(4): 505–516.

    [36]

    卢开放,侯正猛,孙伟,等. 云南省矿井抽水蓄能电站潜力评估与建设关键技术[J]. 工程科学与技术, 2022,54(1):136-144.

    LU K F, HOU Z M, SUN W, et al. Key technologies for potential evaluation and construction of mine pumped storage power stations in Yunnan Province[J]. Engineering Science and Technology, 2022, 54 (1): 136-144.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  178
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2024-07-14
刊出日期:  2024-08-15

目录